NanoWorld AG Rue Jaquet-Droz 1, C.P. 216 2002 Neuchâtel Switzerland www.nanoworld.com

Table of contents

General Description Pointprobe Silicon-SPM-Probes	4
General Description Arrow Silicon-SPM-Probes	5
General Description Pyrex-Nitride-SPM-Probes	6
Special Versions	7
Available Coatings	10
Packaging	12
Handling Tips	13

Non-Contact Mode

Type: Arrow [™] NC15
Type: Arrow [™] NCR16
Type: Arrow™ NCPt17
Type: Arrow™ UHF18
Type: NCH
Type: NCHR
Type: NCHPt21
Type: NCST22
Type: NCSTR
Type: NCL
Type: NCLR
Type: NCLPt
Type: SEIHR27
Type: SSS-NCH
Type: SSS-NCL
Type: SSS-SEIH
Type: AR5-NCHR
Type: AR5T-NCHR
Type: AR10-NCHR
Type: AR5-NCLR
Type: DT-NCHR
Type: CDT-NCHR
Type: DT-NCLR
Type: CDT-NCLR

Force Modulation

Type: Arrow™ FM	39
Type: Arrow™ FMR	40
Type: Arrow™ EFM	41
Туре: FM	42
Type: FMR	43
Туре: ЕFM	44
Type: MFMR	45
Type: S-MFMR	46
Type: DT-FMR	47
Type: CDT- FMR	48

Contact Mode

Type: PNP-DB	49
Type: PNP-TR	50
Type: Arrow [™] CONT	51
Type: Arrow [™] CONTR	52
Type: Arrow [™] CONTPt	53
Type: CONT	54
Type: CONTR	55
Type: CONTPt	56
Type: CONTSC	57
Type: CONTSCR	58
Type: ZEILR	59

Tipless Cantilevers and Arrays

Type: Arrow™ TL1	60
Type: Arrow™ TL2	61
Type: Arrow™ TL8	62
Type: PNP-TR-TL	63
Type: PNP-TR-TL-Au	64

Pointprobe® is a registered trademark of NanoWorld AG Gel-Pak® is a registered trademark of Vichem Corporation All data are subject to change without notice.

NanoWorld AG Rue Jaquet-Droz 1, C.P. 216 2002 Neuchâtel Switzerland www.nanoworld.com

Other Products

Special Developments	65
Type: ALIGN	66
Туре: ТЅ-КІТ	67
Type: ESD-KIT	67
Terms and conditions	68

www.nanoworld.com

General Description Pointprobe[®] Silicon-SPM-Probes

General

- SPM Probe for very high resolution imaging
- fits to all well known commercial SPMs
- monolithic design of support chip, cantilever and tip
- tip is pointing into the <100> direction
- cantilever and tip are supported by a single crystal silicon holder

Material Features

- highly doped, single crystal silicon
- high conductivity of the doped silicon avoids electrostatic charging
- resistively is as low as 0.01-0.025 Ohm*cm
- no intrinsic stress and absolutely straight cantilevers
- no bending of cantilever by changing temperatures
- chemically inert silicon for application in fluids or electrochemical cells

Cantilever

- trapezoidal cross section of the cantilever
- wide detector side for easy laser adjustment
- small width at the tip side reduces the damping

Support Chip

- cantilever is fixed to a silicon support chip
- dimensions of the holder are very reproducible (1.6 mm x 3.4 mm)
- replacement of probe without major readjustment
- etched corners of the holder avoid contact between the holder and the sample

Tip

- tip is shaped like a polygon based pyramid
- macroscopic half cone angle is 20° to 25° viewed along the cantilever axis
- 25° to 30° looked from the side
- virtually zero at the very tip end
- tip radius is typically better than 8 nm
- tip height is 10-15 μm

www.nanoworld.com

General Description Arrow™ Silicon-SPM-Probes

General

- SPM probes for very high resolution imaging
- fits to all well-known commercial SPMs
- cantilever and tip are supported by a single crystal silicon holder
- monolithic design of support chip, cantilever and tip
- tip is pointing into the <100> direction

Material Features

- highly doped, single crystal silicon
- high conductivity of the doped silicon prevents electrostatic charging
- resistivity is as low as 0.01-0.025 Ohm*cm.
- no intrinsic stress and absolutely straight cantilevers
- no bending of cantilever by changing temperatures
- chemically inert silicon for application in fluids or electrochemical cells

Cantilever

- rectangular cantilever that is shaped like an arrow
- trapezoidal cross section of the cantilever
- wide detector side for easy adjustment of the detection system
- small width at the tip side reduces damping

Support Chip

- cantilever is fixed to a silicon holder
- dimensions of the holder are very reproducible (3.4 mm x 1.6 mm x 0.3 mm)
- replacement of the sensor without major readjustment of the detection system
- etched corners of the holder avoid contact between the holder and the sample

Тір

- tip has a tetrahedral shape and is located at the very end of the cantilever
- macroscopic half-cone angles
 - are 30° to 35° seen along the cantilever axis
 - are 20° to 25° seen from the side
 - o taper to virtually zero at the very end of the tip
- tip radii are typically better than 10 nm
- tip height is 10-15 μm

www.nanoworld.com

General Description Pyrex-Nitride -SPM-Probes

General

- SPM probes for a wide range of applications
- fits to all well-known commercial SPMs
- silicon nitride cantilever and tips
- cantilevers are supported by a support chip made of pyrex glass
- designed for various imaging applications in contact mode or dynamic mode
- single support chips for easy handling

Material Features

- low-stress silicon nitride for lowest cantilever bending
- excellent hardness for wear resistance and extended lifetime

Cantilevers

- multi-lever design with either four rectangular cantilevers or four triangular cantilevers
- reflective chromium / gold coating on the backside of the cantilevers
- stress-compensated with bending below 2°

Support Chip

- support chips made of pyrex material (3.4 mm x 1.6 mm x 0.5 mm)
- easy handling due to single support chips

Tip

- oxide sharpened pyramidal probe tips
- tip height 3.5 15 µ and tip radius of curvature typically < 10 nm
- macroscopic half-cone angles 35°

www.nanoworld.com

Special Versions

SuperSharpSilicon[™] Tip (SSS)

For enhanced resolution of nanostructures and micro roughness we have developed an advanced tip manufacturing process leading to a further improvement of the tip sharpness with radii typically as low as 2nm. With these tips we have pushed back the frontiers of the technology.

The SuperSharpSilicon[™] Tip is fabricated on the base of the well established Pointprobe® type.

The mechanical properties of the cantilevers are described in the following product descriptions for each SuperSharpSilicon[™] Tip respectively. These properties are combined with the advanced SuperSharpSilicon[™] Tip shape.

Tip Features

The typical radius of a SuperSharpSilicon[™] Tip is about 2nm. We guarantee a tip radius of smaller than 5nm (guaranteed yield: 80%). The half cone angle is better than 10° at the last 200nm of the tip. The tip height is 10 to 15µm allowing measurement on fairly rough surfaces.

Diamond Coated Tip (DT) Conductive Diamond Coated Tip (CDT)

For SPM applications that require hard contact between probe and sample we recommend our Diamond Coated Tip (DT). Some applications are friction measurements, the measurement of elastic properties of samples as well as wear measurements or nanostructuring. Much more operation modes and applications are feasible which benefit from the hardness of the hardest material in the world - diamond.

The DT and CDT Tips are based on the Pointprobe® Force Modulation Probe, the Pointprobe® Non-Contact / TappingMode high frequency probe or the Pointprobe® Non-Contact / TappingMode low frequency probe.

For an enhancement of the reflectivity the detector side of the cantilever beam is covered by a reflex coating.

Diamond Coating

True polycrystalline diamond coating on the tipside of the cantilever with the unsurpassed hardness of diamond.

The thickness of the diamond layer is approximately 100 nm. The macroscopic tip radius is in the range of 100-200 nm, but the tip often exhibits a nanoroughness in the 10nm regime which improves the resolution on flat surfaces.

Conductive Diamond Coating

In the case of the CDT the conductivity is in the range of 0.003-0.005 Ohm*cm.

www.nanoworld.com

High Aspect Ratio Tip (AR5 and AR10)

For measurements on samples with sidewall angles approaching 90°, e.g. deep trench measurements or other semiconductor applications, we offer two different types of High Aspect Ratio Tips showing near-vertical sidewalls. These tips have an overall height of 10-15 µm which allows measurements on highly corrugated samples. At the last few micrometers the tips show a high aspect ratio portion that is symmetric when viewed from the side as well as along the cantilever axis. The tip radius is typically 10 nm. We guarantee at least 15 nm.

The High Aspect Ratio Tips are fabricated on the base of the well established Pointprobe® type. Thus the geometry of holder and cantilever is equal to that of the Pointprobe® type.

Tip Features AR5

The high aspect ratio portion of the AR5 tip is larger than 2 μ m and shows an aspect ratio of typically 7:1. We guarantee a minimum aspect ratio of 5:1.

Resulting from this the half cone angle of the high aspect ratio portion is typically smaller than 5° .

Tip Features AR10

The high aspect ratio portion of the AR10 tip is larger than 1.5 μ m and shows an aspect ratio of typically **12:1**. We guarantee a minimum aspect ratio of **10:1**.

Resulting from this the half cone angle of the high aspect ratio portion is typically smaller than 2.8° .

www.nanoworld.com

Tilt Compensated High Aspect Ratio Tip (AR5T)

Our Tilt Compensated High Aspect Ratio Tip (AR5T) is similar to our High Aspect Ratio Tip (AR5). However, the high aspect ratio portion of the tip is tilted 13° with respect to the center axis of the tip. This compensates the tilt angle of the cantilever that results from mounting the probe to the AFM head. This unique feature allows absolutely symmetrical imaging of near-vertical sidewalls. Therefore these tips can be perfectly used to characterize the slope of steep sidewalls.

The High Aspect Ratio Tips are fabricated on the base of the well established Pointprobe® type. Thus the geometry of holder and cantilever is equal to that of the Pointprobe® type.

Tip Features AR5T

With an overall tip height of 10-15 μm these tips allow measurements on highly corrugated samples. The tip radius is typically 10 nm.

We guarantee at least 15 nm. The tip has a high aspect ratio portion that is larger than 2 μ m.

This portion is sympetric when viewed from the side as well as along the

cantilever axis and shows an aspect ratio of typically 7:1. We guarantee a minimum aspect ratio of 5:1.

Moreover the high aspect ratio portion is tilted 13° with respect to the center

axis of the tip allowing absolutely symmetrical imaging.

For high quality deep trench measurements a High Aspect Ratio Tip is highly recommended in order to magnify the region of interest. With a tilted High Aspect Ratio Tip, the performance of the measurement can be enhanced even further by offering a more symmetrically scan.

www.nanoworld.com

Available Coatings

Reflex Coating (for Pointprobe® and Arrow Silicon AFM Probes)

- 30 nm thick aluminum coating on the backside
- enhances reflectivity of the laser beam by a factor of 2.5
- prevents light from interfering within the cantilever
- strongly recommended for thin cantilevers if the coating is compatible with the application

Hard Magnetic Coating (for Pointprobe® AFM Probes)

- 40 nm thick cobalt alloy coating on the tip side
- permanent magnetization of the tip
- tip needs to be magnetized by means of an external strong magnet
- soft magnetic samples may be influenced by the tip

Soft Magnetic Coating (for Pointprobe® AFM Probes)

- Soft magnetic coating on the tip-side
- coercitivity of app. 0.75 Oe
- remancence magnetization of app. 225 emu/cm³

Diamond Coating / Conductive Diamond Coating (for Pointprobe® AFM Probes)

- 100 nm thick coating of polycrystalline diamond on the tip side
- unsurpassed hardness of the tip
- in case of the CDT the conductivity is in the range of 0.003 0.005 Ohm*cm

PtIr5 Coating (for Pointprobe® AFM Probes and for some Arrow[™] Probes, others on request)

- 25nm thick double layer of chromium and platinum iridium5
- layer on both sides of the product
- the layer enhances the conductivity and allows electrical contact
- detector side coating enhances the reflectivity of the laser beam by a factor of 2
- the layer is stress compensated and wear resistant
- bending due to stress is less than 2°

Gold Coating (for Pointprobe® AFM Probes on request)

- 70nm thick chromium/gold coating on the backside of the cantilever
- 70nm thick chromium/gold coating on both sides of the probe

www.nanoworld.com

Chromium/Titanium/Gold Coating (for Pyrex-Nitride AFM Probes)

- 70nm thick chromium/titanium/gold coating on the backside (on both sides for tipless version available)
- enhances reflectivity of the laser beam

Titanium/Gold Coating (for Arrow™ Tipless Cantilevers))

- 5 nm titanium / 30 nm gold coating on the top side
- enhances reflectivity of the laser beam

www.nanoworld.com

Packaging

10 probes

Datasheet of all 10 Probes contains Width of cantilever Length of cantilever Thickness of cantilever Calculated Force Constant of cantilever Calculated Resonance Frequency of cantilever

20 probes

For easy handling our Silicon-SPM-Probes are shipped in a Gel-Pak $(2^{\circ} \times 2^{\circ})$. These trays are specially designed for easy detaching of the probes.

Datasheet of all 20 Probes contains Width of cantilever Length of cantilever Thickness of cantilever Calculated Force Constant of cantilever Calculated Resonance Frequency of cantilever

50 probes

For easy handling our Silicon-SPM-Probes are shipped in a Gel-Pak® box (2" x 2"). These trays are specially designed for easy detaching of the probes.

Datasheet Not available

Full wafer 4"

The wafer contains 380 up to 388 Probes, depending on the product. For further information take a look at the datasheet.

Datasheet of 32 Probes contains Width of cantilever Length of cantilever Thickness of cantilever Calculated Force Constant of cantilever Calculated Resonance Frequency of cantilever

Pointprobe® is a registered trademark of NanoWorld AG Gel-Pak® is a registered trademark of Vichem Corporation All data are subject to change without notice.

www.nanoworld.com

Handling Tips

For small packages

Our Probes are shipped in the specially designed Gel-Pak[®] carrier / shippers. The carrier is sealed with our NanoWorld *Authenticity Seal*. This seal will guarantee that the goods contained in the box have been quality controlled and packed by NanoWorld.

Before breaking the seal and opening the box ensure the following:

- Is the box sealed and is the seal intact?
- Please check the content for transportation damage! (e.g. loose probes)
- Please verify if the delivered probes are consistent with your order! The label at the backside of the box contains the information about the probes.

In case of any problems please contact your supplier immediately. *Please do not brake the seal if an exchange is necessary!*

Detaching the probes:

The carrier contains a soft elastomeric coating (gel) applied to a tray which is fixed in the hinged box. The probes are mounted on the gel side of the tray. They are held in place when they get in contact with the coated surface of the tray. The holding action depends on the surface contact with the backside of the probe holder. The better the contact the better the probe is held. The gel is not an adhesive. The top side of the probe together with cantilever and tip is left untouched.

- 1. Position the box in a way that you can see the probes (labeled side down).
- 2. Break the seal with a sharp object.
- 3. Press the lid upwards to open the box

Caution: The tips are pointing upwards. Touching them with tweezers or fingers will destroy them.

- To remove a probe, grab it at the holder with tapering tweezers.
- 5. Now you can carefully lift off the probe from the gel.

www.nanoworld.com

Handling Tips

For 4" wafers

The probe is identified by the label on the wafer box. Dopant and resistivity refer to the complete wafer i.e. tip, cantilever and holder. T, W and L represent thickness, width and length of the cantilever. Furthermore you can find the range for the Resonance Frequency and the Force Constant.

The wafers are shipped in a Gel-Pak® wafer box containing a special gel membrane which holds the wafer safely in place. The holding action depends on the contact between the smooth gel surface and the backside of the wafer.

Although the gel immobilizes the wafer the probe can easily be removed by applying vacuum at the end of the vacuum hose fixed to the back of the wafer box. Beneath the gel membrane a white fabric mesh is visible. Vacuum at the reverse side of the membrane draws the gel into the cavities of the mesh causing it to partially separate from the wafer and the probe. Thus the contact between the gel surface and the backside of the probe substrate is reduced allowing the probe to be readily removed by means of a vacuum pick-up tool or tapering tweezers.

The wafer comprises 388 probes. Each probe is surrounded by a silicon frame. The probe comprises the holder (for handling), the cantilever and the tip.

Caution: The tips are pointing upwards. Touching them with tweezers or fingers will destroy them.

The holder is attached to the frame by means of 2 very thin (20-30 μm) silicon brackets. While applying vacuum to the end of the vacuum hose, gently press on the holder with the vacuum pick-up tool or tweezers to break the brackets. Now you can lift off the probe.

It is recommended to apply a negative pressure of approx. 100 millibar (=10 kPa) at the end of the vacuum hose fixed to the back of the wafer box!

If vacuum is not available you can carefully lift off the probe with tapering tweezers. Take care not to touch the cantilever or tip and not to puncture the gel with the tweezers.

www.nanoworld.com

Type: Arrow[™] NC

Non-Contact / TappingMode

Optimized positioning through maximized tip visibility

NanoWorld ArrowTM NC probes are designed for Non-contact / TappingMode imaging. This probe type combines high operation stability with outstanding sensitivity and fast scanning ability. All probes of the ArrowTM series are made from monolithic silicon which is highly doped to dissipate static charge. They are chemically inert and offer a high mechanical Q-factor for high sensitivity. The probes feature a rectangular cantilever with a triangular free end and a tetrahedral tip with a height of 10 - 15 μ m.

Additionally this probe offers a typical tip radius of curvature of less than 10 nm.

The unique Arrow[™] shape with the tip position at the very end of the cantilever allows easy positioning of the tip on the area of interest.

Technical Data	Value	Range	Side View
Thickness	4.6 µm	4.1 - 5.1	
Cantilever Geometry Top View			
	W = 45 µm	40 - 50	
	L = 160 µm	155 - 165	Front View
Force Constant	42 N/m	27 - 80	
Resonance Frequency	285 kHz	240 - 380	

Order Code	Quantity	Data Sheet
Arrow NC-10	10	Nominal values
Arrow NC-20	20	Nominal values
Arrow NC-50	50	Nominal values
Arrow NC-W	380	Nominal values

www.nanoworld.com

Type: Arrow[™] NCR

Non-Contact / TappingMode - Reflex Coating

Optimized positioning through maximized tip visibility

NanoWorld ArrowTM NC probes are designed for Non-contact / TappingMode imaging. This probe type combines high operation stability with outstanding sensitivity and fast scanning ability. All probes of the $Arrow^{TM}$ series are made from monolithic silicon which is highly doped to dissipate static charge. They are chemically inert and offer a high mechanical Q-factor for high sensitivity. The probes feature a rectangular cantilever with a triangular free end and a tetrahedral tip with a height of 10 - 15 µm.

Additionally this probe offers a typical tip radius of curvature of less than 10 nm.

The unique Arrow[™] shape with the tip position at the very end of the cantilever allows easy positioning of the tip on the area of interest.

The reflex coating on the detector side of the cantilever enhances its reflectivity and prevents light from interfering within the cantilever.

Order Code	Quantity	Data Sheet
Arrow NCR-10	10	Nominal values
Arrow NCR-20	20	Nominal values
Arrow NCR-50	50	Nominal values
Arrow NCR-W	380	Nominal values

Reflex Coating

Reflex coating is an approximately 30 nm thick aluminium coating on the detector side of the cantilever which enhances the reflectivity of the laser beam by a factor of 2.5. Furthermore it prevents light from interfering within the cantilever. As the coating is almost stress free the bending of the cantilever due to stress is less than 2°.

www.nanoworld.com

Type: Arrow[™] NCPt

Non-Contact / TappingMode – Ptlr5 Coating

Optimized positioning through maximized tip visibility

NanoWorld Arrow[™] NCPt AFM probes are designed for non-contact or tapping mode imaging. This probe type combines high operation stability with outstanding sensitivity and fast scanning ability. All SPM probes of the Arrow[™] series are made from monolithic silicon which is highly doped to dissipate static charge. They are chemically inert and offer a high mechanical Q-factor for high sensitivity. The probes feature a rectangular cantilever with a triangular free end and a tetrahedral tip with a height of 10 - 15 µm.

Additionally this AFM tip offers a typical tip radius of curvature of less than 10 nm.

The unique Arrow[™] shape with the tip position at the very end of the cantilever allows easy positioning of the tip on the area of interest.

The platinum iridium5 (PtIr5) coating on both sides of the probe allows electrical contacts between tip and sample (high conductivity) while enhancing the reflectivity of the cantilever. The typical tip radius of curvature is less than 25 nm.

Order Code	Quantity	Data Sheet
Arrow NCPt-10	10	Nominal values
Arrow NCPt-20	20	Nominal values
Arrow NCPt-50	50	Nominal values
Arrow NCPt-W	380	Nominal values

Ptlr5 Coating

PtIr5 Coating PtIr5 coating is an approximately 23 nm thick double layer of chromium and platinum iridium5 on both sides of the cantilever. The tip side coating enhances the conductivity of the tip and allows electrical contacts. The detector side coating enhances the reflectivity of the laser beam by a factor of 2 and prevents light from interfering within the cantilever. The coating process is optimised for stress compensation and wear resistance. The bending of the cantilever due to stress is less than 2°. Wear at the tip can occur if operating in contact-, friction- or force modulation mode.

www.nanoworld.com

Type: Arrow[™] UHF

Arrow[™] – Ultra High Frequency – Reflex coating

Optimized positioning through maximized tip visibility

NanoWorld Arrow[™] ultra high frequency AFM probes are capable of resonating with a very high frequency of up to 1.5 MHz. This probe type combines outstanding sensitivity with fast scanning ability. All probes of the Arrow[™] series are made from monolithic silicon which is highly doped to dissipate static charge. They are chemically inert and offer a high mechanical Q-factor for high sensitivity. The probes feature a rectangular cantilever with a triangular free end and a tetrahedral tip with a height of 3 µm.

Additionally this AFM probe offers a typical tip radius of curvature of less than 10 nm.

The unique Arrow[™] shape with the tip position at the very end of the cantilever allows easy positioning of the tip on the area of interest.

If needed, specific cantilever thicknesses can be selected within very narrow tolerances for an additional selection fee.

The reflex coating on the detector side of the cantilever enhances the reflectivity and prevents light from interfering within the cantilever.

Technical Data	Value	Range	Side View
Thickness	1.0 µm	0.6 - 1.0	
Cantilever Geometry	W = 42 μm L = 35 μm	-	Front View
Force Constant	42 N/m	-	
Resonance Frequency	1.5 MHz	07 – 1.5	
Order Code	Quantity	Data Sheet	Contraction of the local division of the loc
Arrow UHF-10	10	Nominal values	
Arrow UHF-20	20	Nominal values	

Reflex Coating

Reflex coating is an thin aluminium coating on the detector side of the cantilever which enhances the reflectivity of the laser beam by a factor of 2.5.

www.nanoworld.com

Type: NCH

Non-Contact / TappingMode - High Resonance Frequency

The NanoWorld Pointprobe® NCH type is designed for Non-Contact / TappingMode imaging. This probe type combines high operation stability with outstanding sensitivity and fast scanning ability.

All probes of the Pointprobe® series are made from monolithic silicon which is highly doped to dissipate static charge. They are chemically inert and offer a high mechanical Q-factor for high sensitivity. The tip is shaped like a polygon based pyramid with a height of 10-15 µm.

Additionally this probe offers typical tip radius of curvature of less than 8 nm.

Technical Data	Value	Range
Thickness	4 µm	3.5 - 4.5
Mean Width	30 µm	25 - 35
Length	125 µm	120 - 130
Force Constant	42 N/m	21 - 78
Resonance Frequency	320 kHz	250 - 390

Order Code	Quantity	Data Sheet
NCH-10	10	yes
NCH-20	20	yes
NCH-50	50	no
NCH-W	380	yes

For applications requiring lower Resonance Frequencies or a cantilever length exceeding 125 μ m we recommend our Pointprobe® type <u>NCL</u>.

www.nanoworld.com

Type: NCHR

Non-Contact / TappingMode -High Resonance Frequency - Reflex Coating

The NanoWorld Pointprobe® NCH type is designed for Non-Contact / TappingMode imaging. This type combines high operation stability with outstanding sensitivity and fast scanning ability.

All probes of the Pointprobe® series are made from monolithic silicon which is highly doped to dissipate static charge. They are chemically inert and offer a high mechanical Q-factor for high sensitivity. The tip is shaped like a polygon based pyramid with a height of 10-15 µm.

Additionally this probe offers typical tip radius of curvature of less than 8 nm.

The reflex coating on the detector side of the cantilever enhances its reflectivity and prevents light from interfering within the cantilever.

Technical Data	Value	Range
Thickness	4 µm	3.5 - 4.5
Mean Width	30 µm	25 - 35
Length	125 µm	120 - 130
Force Constant	42 N/m	21 - 78
Resonance Frequency	320 kHz	250 - 390

Order Code	Quantity	Data Sheet
NCHR-10	10	yes
NCHR-20	20	yes
NCHR-50	50	no
NCHR-W	380	yes

Reflex Coating

Reflex coating is an approximately 30 nm thick aluminium coating on the detector side of the cantilever which enhances the reflectivity of the laser beam by a factor of 2.5. Furthermore it prevents light from interfering within the cantilever. As the coating is almost stress free the bending of the cantilever due to stress is less than 2°.

For applications requiring lower Resonance Frequencies or a cantilever length exceeding 125 μm we recommend our Pointprobe® type $\underline{NCLR}.$

www.nanoworld.com

Type: NCHPt

Non-Contact / TappingMode -High Resonance Frequency - PtIr5 Coating

The NanoWorld Pointprobe® NCH type is designed for Non-Contact / TappingMode imaging. This type combines high operation stability with outstanding sensitivity and fast scanning ability.

All probes of the Pointprobe® series are made from monolithic silicon which is highly doped to dissipate static charge. They are chemically inert and offer a high mechanical Q-factor for high sensitivity. The tip is shaped like a polygon based pyramid with a height of 10-15 µm.

The platinum iridium5 (PtIr5) coating on both sides of the probe allows electrical contacts between tip and sample (high conductivity) while enhancing the reflectivity of the cantilever. The typical tip radius of curvature is less than 25 nm.

Value	Range
4 µm	3.5 - 4.5
30 µm	25 - 35
125 µm	120 - 130
42 N/m	21 - 78
320 kHz	250 - 390
	Value 4 μm 30 μm 125 μm 42 N/m 320 kHz

Order Code	Quantity	Data Sheet
NCHPt-10	10	yes
NCHPt-20	20	yes
NCHPt-50	50	no
NCHPt-W	380	yes

Ptlr5 Coating

PtIr5 coating is an approximately 23 nm thick double layer of chromium and platinum iridium5 on both sides of the cantilever. The tip side coating enhances the conductivity of the tip and allows electrical contacts. The detector side coating enhances the reflectivity of the laser beam by a factor of 2 and prevents light from interfering within the cantilever. The coating process is optimized for stress compensation and wear resistance. The bending of the cantilever due to stress is less than 2°. Wear at the tip can occur if operating in Contact Mode, Friction Mode or Force Modulation Mode.

For applications requiring lower Resonance Frequencies or a cantilever length exceeding 125 μ m we recommend our Pointprobe® type <u>NCLPt</u>.

www.nanoworld.com

Type: NCST

Non-Contact / Soft Tapping Mode

NanoWorld Pointprobe[®] NCST AFM probes are designed for non-contact or soft tapping[™] mode imaging. The combination of soft cantilever and fairly high resonance frequency enables stable and fast measurements with reduced tip-sample interaction. Thus, tip and sample wear could be significantly decreased.

All probes of the Pointprobe[®] series are made from monolithic silicon which is highly doped to dissipate static charge. They are chemically inert and offer a high mechanical Q-factor for high sensitivity. The tip is shaped like a polygon based pyramid with a height of 10-15 µm.

Additionally this sensor offers typical tip radius of curvature of less than 8 nm.

Technical Data	Value	Range
Thickness	2.8 µm	2.3 - 3.3
Mean Width	27 µm	22-32
Length	150 µm	145 - 155
Force Constant	7.4 N/m	3 - 16
Resonance Frequency	160 kHz	120 – 205

Order Code	Quantity	Data Sheet
NCST-10	10	yes
NCST-20	20	yes
NCST-50	50	no
NCST-W	380	yes

www.nanoworld.com

Type: NCSTR

Non-Contact / Soft Tapping Mode – Reflex Coating

NanoWorld Pointprobe[®] NCSTR AFM probes are designed for non-contact or soft tapping mode imaging. The combination of soft cantilever and fairly high resonance frequency enables stable and fast measurements with reduced tip-sample interaction. Thus, tip and sample wear could be significantly decreased.

All probes of the Pointprobe[®] series are made from monolithic silicon which is highly doped to dissipate static charge. They are chemically inert and offer a high mechanical Q-factor for high sensitivity. The tip is shaped like a polygon based pyramid with a height of 10-15 µm.

Additionally this probe offers a typical tip radius of curvature of less than 8 nm.

The reflex coating on the detector side of the cantilever enhances its reflectivity and prevents light from interfering within the cantilever.

Technical Data	Value	Range
Thickness	2.8 µm	2.3 - 3.3
Mean Width	27 µm	22- 32
Length	150 µm	145 - 155
Force Constant	7.4 N/m	3 - 16
Resonance Frequency	160 kHz	120 – 205

Order Code	Quantity	Data Sheet
NCSTR-10	10	yes
NCSTR-20	20	yes
NCSTR-50	50	no
NCSTR-W	380	yes

Reflex Coating

Reflex coating is an approximately 30 nm thick aluminium coating on the detector side of the cantilever which enhances the reflectivity of the laser beam by a factor of 2.5. Furthermore it prevents light from interfering within the cantilever.

www.nanoworld.com

Type: NCL

Non-Contact / TappingMode - Long Cantilever

The NanoWorld Pointprobe® NCL type is designed for Non-Contact / TappingMode imaging and offer an alternative to our high frequency Non-Contact type NCH. The NCL type is recommended if the feedback loop of the microscope does not accept high frequencies or if the detection system needs a minimum cantilever length (> 125 µm). This probe combines high operation stability with outstanding sensitivity. Compared to the high frequency Non-Contact type NCH the maximum scanning speed is slightly reduced.

All probes of the Pointprobe® series are made from monolithic silicon which is highly doped to dissipate static charge. They are chemically inert and offer a high mechanical Q-factor for high sensitivity. The tip is shaped like a polygon based pyramid with a height of 10-15 µm.

Additionally this probe offers typical tip radius of curvature of less than 8 nm.

Technical Data	Value	Range
Thickness	7 µm	6.5 - 7.5
Mean Width	38 µm	33 - 43
Length	225 µm	220 - 230
Force Constant	48 N/m	31 - 71
Resonance Frequency	190 kHz	160 - 210

Order Code	Quantity	Data Sheet
NCL-10	10	yes
NCL-20	20	yes
NCL-50	50	no
NCL-W	380	yes

For applications allowing higher Resonance Frequencies or a shorter cantilever length we recommend our Pointprobe® type <u>NCH</u>.

www.nanoworld.com

Type: NCLR

Non-Contact / TappingMode -Long Cantilever - Reflex Coating

The NanoWorld Pointprobe® NCL type is designed for Non-Contact / TappingMode imaging and offer an alternative to our high frequency Non-Contact type NCH. The NCL type is recommended if the feedback loop of the microscope does not accept high frequencies or if the detection system needs a minimum cantilever length (> 125 μ m). This probe combines high operation stability with outstanding sensitivity. Compared to the high frequency Non-Contact type NCH the maximum scanning speed is slightly reduced.

All probes of the Pointprobe® series are made from monolithic silicon which is highly doped to dissipate static charge. They are chemically inert and offer a high mechanical Q-factor for high sensitivity. The tip is shaped like a polygon based pyramid with a height of 10-15 µm.

Additionally this probe offers typical tip radius of curvature of less than 8 nm.

The reflex coating on the detector side of the cantilever enhances its reflectivity and prevents light from interfering within the cantilever.

Technical Data	Value	Range
Thickness	7 µm	6.5 - 7.5
Mean Width	38 µm	33 - 43
Length	225 µm	220 - 230
Force Constant	48 N/m	31 - 71
Resonance Frequency	190 kHz	160 - 210

Order Code	Quantity	Data Sheet
NCLR-10	10	yes
NCLR-20	20	yes
NCLR-50	50	no
NCLR-W	380	yes

Reflex Coating

Reflex coating is an approximately 30 nm thick aluminium coating on the detector side of the cantilever which enhances the reflectivity of the laser beam by a factor of 2.5. Furthermore it prevents light from interfering within the cantilever. As the coating is almost stress free the bending of the cantilever due to stress is less than 2°.

For applications allowing higher Resonance Frequencies or a shorter cantilever length we recommend our Pointprobe® type <u>NCHR</u>.

www.nanoworld.com

Type: NCLPt

Non-Contact / TappingMode -Long Cantilever - PtIr5 Coating

The NanoWorld Pointprobe® NCL Probes are designed for Non-Contact / TappingMode imaging and offer an alternative to our high frequency Non-Contact type NCH. The NCL type is recommended if the feedback loop of the microscope does not accept high frequencies or if the detection system needs a minimum cantilever length (> 125 µm). This probe combines high operation stability with outstanding sensitivity. Compared to the high frequency Non-Contact type NCH the maximum scanning speed is slightly reduced.

All probes of the Pointprobe® series are made from monolithic silicon which is highly doped to dissipate static charge. They are chemically inert and offer a high mechanical Q-factor for high sensitivity. The tip is shaped like a polygon based pyramid with a height of 10-15 µm.

The platinum iridium5 (PtIr5) coating on both sides of the probe allows electrical contacts between tip and sample (high conductivity) while enhancing the reflectivity of the cantilever. The typical tip radius of curvature is less than 25 nm.

Technical Data	Value	Range
Thickness	7 µm	6.5 - 7.5
Mean Width	38 µm	33 - 43
Length	225 µm	220 - 230
Force Constant	48 N/m	31 - 71
Resonance Frequency	190 kHz	160 - 210

Order Code	Quantity	Data Sheet
NCLPt-10	10	yes
NCLPt-20	20	yes
NCLPt-50	50	no
NCLPt-W	380	yes

Ptlr5 Coating

PtIr5 coating is an approximately 23 nm thick double layer of chromium and platinum iridium5 on both sides of the cantilever. The tip side coating enhances the conductivity of the tip and allows electrical contacts. The detector side coating enhances the reflectivity of the laser beam by a factor of 2 and prevents light from interfering within the cantilever. The coating process is optimized for stress compensation and wear resistance. The bending of the cantilever due to stress is less than 2°. Wear at the tip can occur if operating in Contact-, Friction- or Force Modulation Mode.

For applications allowing higher Resonance Frequencies or a shorter cantilever length we recommend our Pointprobe® type <u>NCHPt</u>.

www.nanoworld.com

Type: SEIHR

SEIKO INSTRUMENTS Microscopes - Non-Contact Mode -High Force Constant - Reflex Coating

The NanoWorld Pointprobe® SEIHR type is designed for owners of a Seiko Instruments microscope using the Non-Contact Mode.

All probes of the Pointprobe® series are made from monolithic silicon which is highly doped to dissipate static charge. They are chemically inert and offer a high mechanical Q-factor for high sensitivity. The tip is shaped like a polygon based pyramid with a height of 10-15 µm.

Additionally this probe offers typical tip radius of curvature of less than 8 nm.

The reflex coating on the detector side of the cantilever enhances its reflectivity and prevents light from interfering within the cantilever.

Technical Data	Value	Range
Thickness	5 µm	4.5 - 5.5
Mean Width	33 µm	27.5 - 37.5
Length	225 µm	220 - 230
Force Constant	15 N/m	9 - 25
Resonance Frequency	130 kHz	110 - 150

Order Code	Quantity	Data Sheet
SEIHR-10	10	Yes
SEIHR-20	20	Yes
SEIHR-50	50	No
SEIHR-W	380	yes

Reflex Coating

Reflex coating is an approximately 30 nm thick aluminium coating on the detector side of the cantilever which enhances the reflectivity of the laser beam by a factor of 2.5. Furthermore it prevents light from interfering within the cantilever. As the coating is almost stress free the bending of the cantilever due to stress is less than 2°.

www.nanoworld.com

Type: SSS-NCH

SuperSharpSilicon[™] - Non-Contact / TappingMode -High Resonance Frequency

The NanoWorld SuperSharpSilicon[™] NCH type is designed for Non-Contact / TappingMode imaging. This type combines high operation stability with outstanding sensitivity and fast scanning ability.

The SuperSharpSilicon[™] type is based on the Pointprobe® series. All probes of the Pointprobe® series are made from monolithic silicon which is highly doped to dissipate static charge. They are chemically inert and offer a high mechanical Q-factor for high sensitivity. The tip is shaped like a polygon based pyramid with a height of 10-15 µm.

For enhanced resolution of nanostructures and microroughness we have developed an advanced tip manufacturing process leading to unrivalled sharpness of the SuperSharpSilicon[™] Tip.

This type offers unique features:

- typical tip radius of curvature of 2 nm
- guaranteed tip radius of curvature 5 nm (yield >80%)
- half cone angle < 10° at the last 200 nm of the tip

Technical Data	Value	Range
Thickness	4 µm	3.5 - 4.5
Mean Width	30 µm	25 - 35
Length	125 µm	120 - 130
Force Constant	42 N/m	21 - 78
Resonance Frequency	320 kHz	250 - 390

Order Code	Quantity	Data Sheet
SSS-NCH-10	10	yes
SSS-NCH-20	20	yes
SSS-NCH-50	50	no
SSS-NCH-W	380	yes

For applications requiring lower Resonance Frequencies or a cantilever length exceeding 125 µm we recommend our SuperSharpSilicon™ type <u>SSS-NCL</u>.

www.nanoworld.com

Type: SSS-NCL

SuperSharpSilicon[™] - Non-Contact / TappingMode -Long Cantilever

NanoWorld SuperSharpSilicon™ NCL Probes are designed for Non-Contact / TappingMode imaging and offer an alternative to our high frequency Non-Contact type NCH. The NCL type is recommended if the feedback loop of the microscope does not accept high frequencies or if the detection system needs a minimum cantilever length (> 125 µm). This probe combines high operation stability with outstanding sensitivity. Compared to the high frequency Non-Contact type NCH the maximum scanning speed is slightly reduced.

The SuperSharpSilicon™ type is based on the Pointprobe® series. All probes of the Pointprobe® series are made from monolithic silicon which is highly doped to dissipate static charge. They are chemically inert and offer a high mechanical Q-factor for high sensitivity. The tip is shaped like a polygon based pyramid with a height of 10-15 µm.

For enhanced resolution of nanostructures and microroughness we have developed an advanced tip manufacturing process leading to unrivalled sharpness of the SuperSharpSilicon™ Tip.

This type offers unique features:

- typical tip radius of curvature of 2 nm •
- guaranteed tip radius of curvature 5 nm (yield >80%)
- half cone angle < 10° at the last 200 nm of the tip

Technical Data	Value	Range	
Thickness	7 µm	6.5 - 7.5	
Mean Width	38 µm	33 - 43	
Length	225 µm	220 - 230	14.
Force Constant	48 N/m	31 - 71	
Resonance Frequency	190 kHz	160 - 210	

Order Code	Quantity	Data Sheet
SSS-NCL-10	10	yes
SSS-NCL-20	20	yes
SSS-NCL-50	50	No
SSS-NCL-W	380	yes

For applications allowing higher resonance frequencies or a shorter cantilever length we recommend our SuperSharpSilicon[™] type <u>SSS-NCH</u>.

www.nanoworld.com

Type: SSS-SEIH

SuperSharpSilicon[™] - SEIKO INSTRUMENTS Microscopes -Non-Contact Mode - High Force Constant

The NanoWorld SuperSharpSilicon SEIHR type is designed for owners of a Seiko Instruments microscope using the Non-Contact Mode.

The SuperSharpSilicon[™] type is based on the Pointprobe® series. All probes of the Pointprobe® series are made from monolithic silicon which is highly doped to dissipate static charge. They are chemically inert and offer a high mechanical Q-factor for high sensitivity. The tip is shaped like a polygon based pyramid with a height of 10-15 µm.

For enhanced resolution of nanostructures and microroughness we have developed an advanced tip manufacturing process leading to unrivalled sharpness of the SuperSharpSilicon™ Tip.

This probe offers unique features:

- typical tip radius of curvature of 2 nm
- guaranteed tip radius of curvature 5 nm (yield >80%)
- half cone angle < 10° at the last 200 nm of the tip

Value	Range	
5 µm	4.5 - 5.5	
33 µm	27.5 - 37.5	
225 µm	220 - 230	
15 N/m	9 - 25	
130 kHz	110 - 150	
	Value 5 μm 33 μm 225 μm 15 N/m 130 kHz	Value Range 5 μm 4.5 - 5.5 33 μm 27.5 - 37.5 225 μm 220 - 230 15 N/m 9 - 25 130 kHz 110 - 150

Order Code	Quantity	Data Sheet
SSS-SEIH-10	10	yes
SSS-SEIH-20	20	yes
SSS-SEIH-50	50	no
SSS-SEIH-W	380	yes

www.nanoworld.com

Type: AR5-NCHR

High Aspect Ratio (> 5:1) - Non-Contact / TappingMode -High Resonance Frequency - Reflex Coating

The NanoWorld High Aspect Ratio NCH type is designed for Non-Contact / TappingMode imaging. This type combines high operation stability with outstanding sensitivity and fast scanning ability.

The High Aspect Ratio type is based on the Pointprobe® series. All probes of the Pointprobe® series are made from monolithic silicon which is highly doped to dissipate static charge. They are chemically inert and offer a high mechanical Q-factor for high sensitivity. The tip is shaped like a polygon based pyramid with a height of 10-15 µm.

For measurements on samples with sidewall angles approaching 90° we offer specially tailored tips showing a high aspect ratio portion with near-vertical sidewalls.

This type offers unique features:

- length of the high aspect ratio portion of the tip > 2 μm
- typical aspect ratio of this portion in the order of 7:1 (guaranteed 5:1) (when viewed from side as well as along cantilever axis!)
- half cone angle of the high aspect ratio portion typically < 5°
- typical tip radius of curvature < 10 nm

The reflex coating on the detector side of the cantilever enhances its reflectivity and prevents light from interfering within the cantilever.

Technical Data	Value	Range
Thickness	4 µm	3.5 - 4.5
Mean Width	30 µm	25 - 35
Length	125 µm	120 - 130
Force Constant	42 N/m	21 - 78
Resonance Frequency	320 kHz	250 - 390

Order Code	Quantity	Data Sheet
AR5-NCHR-10	10	yes
AR5-NCHR-20	20	yes
AR5-NCHR-50	50	no
AR5-NCHR-W	380	ves

Reflex Coating

Reflex coating is an approximately 30 nm thick aluminium coating on the detector side of the cantilever which enhances the reflectivity of the laser beam by a factor of 2.5. Furthermore it prevents light from interfering within the cantilever. As the coating is almost stress free the bending of the cantilever due to stress is less than 2°.

For applications requiring lower Resonance Frequencies or a cantilever length exceeding 125 μm we recommend our High Aspect Ratio type <u>AR5-NCLR</u>.

Pointprobe® is a registered trademark of NanoWorld AG Gel-Pak® is a registered trademark of Vichem Corporation All data are subject to change without notice.

www.nanoworld.com

Type: AR5T-NCHR

Tilted High Aspect Ratio (> 5:1) - Non-Contact / TappingMode -High Resonance Frequency - Reflex Coating

The NanoWorld High Aspect Ratio NCH type is designed for Non-Contact / TappingMode imaging. This type combines high operation stability with outstanding sensitivity and fast scanning ability.

The High Aspect Ratio type is based on the Pointprobe® series. All probes of the Pointprobe® series are made from monolithic silicon which is highly doped to dissipate static charge. They are chemically inert and offer a high mechanical Q-factor for high sensitivity. The tip is shaped like a polygon based pyramid with a height of 10-15 µm.

For measurements on samples with sidewall angles approaching 90° we offer a special version of our tailored tips. The last 2 μ m of the tip are tilted 13° to the center axis of the tip.

This type offers unique features:

- tilted 13° to the center axis of the tip
- length of the high aspect ratio portion of the tip > 2 μm
- typical aspect ratio of this portion in the order of 7:1 (guaranteed 5:1) (when viewed from side as well as along cantilever axis!)
- half cone angle of the high aspect ratio portion typically < 5°
- typical tip radius of curvature < 10 nm

The reflex coating on the detector side of the cantilever enhances its reflectivity and prevents light from interfering within the cantilever.

Technical Data	Value	Range
Thickness	4 µm	3.5 - 4.5
Mean Width	30 µm	25 - 35
Length	125 µm	120 - 130
Force Constant	42 N/m	21 - 78
Resonance Frequency	320 kHz	250 - 390

Order Code	Quantity	Data Sheet
AR5T-NCHR-10	10	yes
AR5T-NCHR-20	20	yes
AR5T-NCHR-50	50	no
AR5T-NCHR-W	380	ves

13°

Reflex Coating

Reflex coating is an approximately 30 nm thick aluminium coating on the detector side of the cantilever which enhances the reflectivity of the laser beam by a factor of 2.5. Furthermore it prevents light from interfering within the cantilever. As the coating is almost stress free the bending of the cantilever due to stress is less than 2°.

www.nanoworld.com

Type: AR10-NCHR

High Aspect Ratio (> 10:1) - Non-Contact / TappingMode -High Resonance Frequency - Reflex Coating

The NanoWorld High Aspect Ratio NCH type is designed for Non-Contact / TappingMode imaging. This type combines high operation stability with outstanding sensitivity and fast scanning ability.

The High Aspect Ratio type is based on the Pointprobe® series. All probes of the Pointprobe® series are made from monolithic silicon which is highly doped to dissipate static charge. They are chemically inert and offer a high mechanical Q-factor for high sensitivity. The tip is shaped like a polygon based pyramid with a height of 10-15 µm.

For measurements on samples with sidewall angles approaching 90° we offer specially tailored tips showing a high aspect ratio portion with near-vertical sidewalls.

This type offers unique features:

- length of the high aspect ratio portion of the tip > 1.5 μm
- typical aspect ratio of this portion in the order of 12:1 (guaranteed 10:1) (when viewed from side as well as along cantilever axis!)
- half cone angle of the high aspect ratio portion typically < 2.8°
- typical tip radius of curvature < 10 nm

The reflex coating on the detector side of the cantilever enhances its reflectivity and prevents light from interfering within the cantilever.

Technical Data	Value	Range	
Thickness	4 µm	3.5 - 4.5	
Mean Width	30 µm	25 - 35	
Length	125 µm	120 - 130	
Force Constant	42 N/m	21 - 78	
Resonance Frequency	320 kHz	250 - 390	

Order Code	Quantity	Data Sheet
AR10-NCHR-10	10	yes
AR10-NCHR-20	20	yes
AR10-NCHR-50	50	no
AR10-NCHR-W	380	ves

Reflex Coating

Reflex coating is an approximately 30 nm thick aluminium coating on the detector side of the cantilever which enhances the reflectivity of the laser beam by a factor of 2.5. Furthermore it prevents light from interfering within the cantilever. As the coating is almost stress free the bending of the cantilever due to stress is less than 2°.

www.nanoworld.com

Type: AR5-NCLR

High Aspect Ratio (> 5:1) - Non-Contact / TappingMode -Long Cantilever - Reflex Coating

The NanoWorld High Aspect Ratio NCL type is designed for Non-Contact / TappingMode imaging and offer an alternative to our high frequency Non-Contact type NCH. The NCL type is recommended if the feedback loop of the microscope does not accept high frequencies or if the detection system needs a minimum cantilever length (> 125 µm). This type combines high operation stability with outstanding sensitivity and fast scanning ability. Compared to the high frequency Non-Contact type NCH the maximum scanning speed is slightly reduced.

The High Aspect Ratio type is based on the Pointprobe® series. All probes of the Pointprobe® series are made from monolithic silicon which is highly doped to dissipate static charge. They are chemically inert and offer a high mechanical Q-factor for high sensitivity. The tip is shaped like a polygon based pyramid with a height of 10-15 µm.

For measurements on samples with sidewall angles approaching 90° we offer specially tailored tips showing a high aspect ratio portion with near-vertical sidewalls.

These probes offer unique features:

- length of the high aspect ratio portion of the tip > 2 μm
- typical aspect ratio of this portion in the order of 7:1 (guaranteed 5:1) (when viewed from side as well as along cantilever axis !)
- half cone angle of the high aspect ratio portion typically < 5°
- typical tip radius of curvature < 10 nm

The reflex coating on the detector side of the cantilever enhances its reflectivity and prevents light from interfering within the cantilever.

Technical Data Value Range
Thickness 7 μm 6.5 - 7.5
Mean Width 38 μm 33 - 43
Length 220 - 230
Force Constant 48 N/m 31 - 71
Resonance Frequency 190 kHz 160 - 210

Order Code	Quantity	Data Sheet
AR5-NCLR-10	10	Yes
AR5-NCLR-20	20	Yes
AR5-NCLR-50	50	No
AR5-NCLR-W	380	Yes

Reflex Coating

Reflex coating is an approximately 30 nm thick aluminium coating on the detector side of the cantilever which enhances the reflectivity of the laser beam by a factor of 2.5. Furthermore it prevents light from interfering within the cantilever. As the coating is almost stress free the bending of the cantilever due to stress is less than 2°.

For applications allowing higher Resonance Frequencies or a shorter cantilever length we recommend our High Aspect Ratio type $\underline{\text{AR5-NCHR}}$.

www.nanoworld.com

Type: DT-NCHR

Diamond Coated Tip - Non-Contact / TappingMode -High Resonance Frequency - Reflex Coating

The NanoWorld Diamond Coated NCH type is designed for Non-Contact / TappingMode imaging. This type combines high operation stability with outstanding sensitivity and fast scanning ability.

The Diamond Coated type is based on the Pointprobe® series. All probes of the Pointprobe® series are made from monolithic silicon which is highly doped to dissipate static charge. They are chemically inert and offer a high mechanical Q-factor for high sensitivity. The tip is shaped like a polygon based pyramid with a height of 10-15 µm.

For applications that require hard contact between tip and sample this probe offers a real diamond tip side coating. This coating features extremely high wear resistance due to the unsurpassed hardness of diamond. The typical macroscopic tip radius of curvature is in the range between 100 and 200 nm. Nanoroughnesses in the 10 nm regime improve the resolution on flat surfaces.

The reflex coating on the detector side of the cantilever enhances its reflectivity and prevents light from interfering within the cantilever.

Technical Data	Value	Range		A
Thickness	4 µm	3.5 - 4.5		
Mean Width	30 µm	25 - 35	ALA//	
Length	125 µm	120 - 130	V	1.153
Force Constant	42 N/m	21 - 78		1.00000
Resonance Frequency	320 kHz	250 - 390		122 527
				and a stand of the state of the

\mathbb{W}	
116	1332 1

Order Code	Quantity	Data Sheet
DT-NCHR-10	10	yes
DT-NCHR-20	20	yes
DT-NCHR-50	50	no
DT-NCHR-W	380	yes

Fig.: Raman spectrum of the diamond coating

Diamond Coating

Diamond coating is an approximately 100 nm thick coating of polycrystalline diamond on the tip side of the cantilever leading to an unsurpassed hardness of the tip. The figure shows the Raman spectrum of the coating verifying true diamond.

Reflex Coating

Reflex coating is an approximately 30 nm thick aluminum coating on the detector side of the cantilever which enhances the reflectivity of the laser beam by a factor of 2.5. Furthermore it prevents light from interfering within the cantilever. As the coating is almost stress free the bending of the cantilever due to stress is less than 2°.

For applications requiring lower Resonance Frequencies or a cantilever length exceeding 125 μ m we recommend our Diamond Coated type <u>DT-NCLR</u>.

Pointprobe® is a registered trademark of NanoWorld AG Gel-Pak® is a registered trademark of Vichem Corporation All data are subject to change without notice.

www.nanoworld.com

Type: CDT-NCHR

Conductive Diamond Coated Tip - Non-Contact / TappingMode -High Resonance Frequency - Reflex Coating

The NanoWorld Conductive Diamond Coated NCH type is designed for Non-Contact / TappingMode imaging. This type combines high operation stability with outstanding sensitivity and fast scanning ability.

The Diamond Coated type is based on the Pointprobe® series. All probes of the Pointprobe® series are made from monolithic silicon which is highly doped to dissipate static charge. They are chemically inert and offer a high mechanical Q-factor for high sensitivity. The tip is shaped like a polygon based pyramid with a height of 10-15 µm.

For applications that require hard contact between tip and sample this type offers a real diamond tip side coating. This coating features extremely high wear resistance due to the unsurpassed hardness of diamond. The typical macroscopic tip radius of curvature is in the range between 100 and 200 nm. Nanoroughnesses in the 10 nm regime improve the resolution on flat surfaces.

The CDT features a conductive diamond coating. Some typical applications for these tips are Scanning Spreading Resistance Microscopy (SSRM), Tunneling AFM (Conducting AFM) and Scanning Capacitance Microscopy (SCM).

The reflex coating on the detector side of the cantilever enhances its reflectivity and prevents light from interfering within the cantilever.

Technical Data	Value	Range	-
Thickness	4 µm	3.5 - 4.5	4
Mean Width	30 µm	25 - 35	
Length	125 µm	120 - 130	
Force Constant	42 N/m	21 - 78	
Resonance Frequency	320 kHz	250 - 390	

				Contraction from the state and the state of the second
Order Code	Quantity	Data Sheet		
CDT-NCHR-10	10	yes		
CDT-NCHR-20	20	yes	1000-	
CDT-NCHR-50	50	no		1
CDT-NCHR-W	380	yes	800-	A

Fig.: Raman spectrum of the diamond coating

Conductive Diamond Coating

Diamond coating is an approximately 100 nm thick coating of polycrystalline diamond on the tip side of the cantilever leading to an unsurpassed hardness of the tip. The figure shows the Raman spectrum of the coating verifying true diamond. The coating is highly doped with boron. This leads to a macroscopic resistivity of 0.003 – 0.005 Ohm*cm.

Reflex Coating

Reflex coating is an approximately 30 nm thick aluminum coating on the detector side of the cantilever which enhances the reflectivity of the laser beam by a factor of 2.5. Furthermore it prevents light from interfering within the cantilever. As the coating is almost stress free the bending of the cantilever due to stress is less than 2°.

For applications requiring lower Resonance Frequencies or a cantilever length exceeding 125 µm we recommend our Conductive Diamond Coated type CDT-NCLR.

Pointprobe® is a registered trademark of NanoWorld AG Gel-Pak® is a registered trademark of Vichem Corporation All data are subject to change without notice.

www.nanoworld.com

Type: DT-NCLR

Diamond Coated Tip - Non-Contact / TappingMode -Long Cantilever - Reflex Coating

The NanoWorld Diamond Coated NCL type is designed for Non-Contact / TappingMode imaging and offer an alternative to our high frequency Non-Contact type NCH. The NCL type is recommended if the feedback loop of the microscope does not accept high frequencies or if the detection system needs a minimum cantilever length (> 125 µm). This type combines high operation stability with outstanding sensitivity and fast scanning ability. Compared to the high frequency Non-Contact type NCH the maximum scanning speed is slightly reduced.

The Diamond Coated type is based on the Pointprobe® series. All probes of the Pointprobe® series are made from monolithic silicon which is highly doped to dissipate static charge. They are chemically inert and offer a high mechanical Q-factor for high sensitivity. The tip is shaped like a polygon based pyramid with a height of 10-15 µm.

For applications that require hard contact between tip and sample this probe offers a real diamond tip side coating. This coating features extremely high wear resistance due to the unsurpassed hardness of diamond.

The typical macroscopic tip radius of curvature is in the range between 100 and 200 nm. Nanoroughnesses in the 10 nm regime improve the resolution on flat surfaces.

The reflex coating on the detector side of the cantilever enhances its reflectivity and prevents light from interfering within the cantilever.

Technical Data	Value	Range	
Thickness	7 µm	6.5 - 7.5	(AAA)
Mean Width	38 µm	33 - 43	
Length	225 µm	220 - 230	V
Force Constant	48 N/m	31 - 71	
Resonance Frequency	190 kHz	160 - 210	

Order Code	Quantity	Data Sheet
DT-NCLR-10	10	Yes
DT-NCLR-20	20	Yes
DT-NCLR-50	50	No
DT-NCLR-W	380	Yes

Fig.: Raman spectrum of the diamond coating

Diamond Coating

Diamond coating is an approximately 100 nm thick coating of polycrystalline diamond on the tip side of the cantilever leading to an unsurpassed hardness of the tip. The figure shows the Raman spectrum of the coating verifying true diamond.

Reflex Coating

Reflex coating is an approximately 30 nm thick aluminum coating on the detector side of the cantilever which enhances the reflectivity of the laser beam by a factor of 2.5. Furthermore it prevents light from interfering within the cantilever. As the coating is almost stress free the bending of the cantilever due to stress is less than 2°.

For applications allowing higher Resonance Frequencies or a shorter cantilever length we recommend our Diamond Coated type <u>DT-NCHR</u>.

Pointprobe® is a registered trademark of NanoWorld AG Gel-Pak® is a registered trademark of Vichem Corporation All data are subject to change without notice.

www.nanoworld.com

Type: CDT-NCLR

Conductive Diamond Coated Tip - Non-Contact / TappingMode-Long Cantilever - Reflex Coating

The NanoWorld Diamond Coated NCL type is designed for Non-Contact / TappingMode imaging and offer an alternative to our high frequency Non-Contact type NCH. The NCL type is recommended if the feedback loop of the microscope does not accept high frequencies or if the detection system needs a minimum cantilever length (> 125 µm). This type combines high operation stability with outstanding sensitivity and fast scanning ability.

The Diamond Coated type is based on the Pointprobe® series. All probes of the Pointprobe® series are made from monolithic silicon which is highly doped to dissipate static charge. They are chemically inert and offer a high mechanical Q-factor for high sensitivity. The tip is shaped like a polygon based pyramid with a height of 10-15 µm.

For applications that require hard contact between tip and sample this probe offers a real diamond tip side coating. This coating features extremely high wear resistance due to the unsurpassed hardness of diamond. The typical macroscopic tip radius of curvature is in the range between 100 and 200 nm. Nanoroughnesses in the 10 nm regime improve the resolution on flat surfaces.

The CDT features a conductive diamond coating. Some typical applications for this tip are Scanning Spreading Resistance Microscopy (SSRM), Tunneling AFM (Conducting AFM) and Scanning Capacitance Microscopy (SCM).

The reflex coating on the detector side of the cantilever enhances its reflectivity and prevents light from interfering within the cantilever.

Technical Data	Value	Range		A
Thickness	7 µm	6.5 - 7.5		
Mean Width	38 µm	33 - 43		
Length	225 µm	220 - 230	V	4 123
Force Constant	48 N/m	31 - 71		1 62013
Resonance Frequency	190 kHz	160 - 210		and the second
				ANE DEC

Order Code	Quantity	Data Sheet	l i
CDT-NCLR-10	10	yes	
CDT-NCLR-20	20	yes	1000-
CDT-NCLR-50	50	no	
CDT-NCLR-W	380	yes	800-

Fig.: Raman spectrum of the diamond coating

Conductive Diamond Coating

Diamond coating is an approximately 100 nm thick coating of polycrystalline diamond on the tip side of the cantilever leading to an unsurpassed hardness of the tip. The figure shows the Raman spectrum of the coating verifying true diamond. The coating is highly doped with boron. This leads to a macroscopic resistivity of 0.003 - 0.005 Ohm*cm.

Reflex Coating

Reflex coating is an approximately 30 nm thick aluminum coating on the detector side of the cantilever which enhances the reflectivity of the laser beam by a factor of 2.5. Furthermore it prevents light from interfering within the cantilever. As the coating is almost stress free the bending of the cantilever due to stress is less than 2°.

For applications allowing higher resonance frequencies or a shorter cantilever length we recommend our Conductive Diamond Coated type <u>CDT-NCHR</u>.

Pointprobe® is a registered trademark of NanoWorld AG Gel-Pak® is a registered trademark of Vichem Corporation All data are subject to change without notice.

www.nanoworld.com

Type: Arrow[™] FM

Force Modulation Mode

Optimized positioning through maximized tip visibility

NanoWorld Arrow[™] FM probes are designed for Force Modulation Mode imaging. The Force Constant of the FM type fills the gap between Contact and Non-Contact probes. Furthermore Non-Contact / TappingMode imaging is possible with this probe (reduced operation stability).

All probes of the Arrow[™] series are made from monolithic silicon which is highly doped to dissipate static charge. They are chemically inert and offer a high mechanical Q-factor for high sensitivity. The probes feature a rectangular cantilever with a triangular free end and a tetrahedral tip with a height of 10 - 15 µm.

Additionally this probe offers a typical tip radius of curvature of less than 10 nm.

The unique Arrow[™] shape with the tip position at the very end of the cantilever allows easy positioning of the tip on the area of interest.

Order Code	Quantity	Data Sheet
Arrow FM-10	10	Nominal values
Arrow FM-20	20	Nominal values
Arrow FM-50	50	Nominal values
Arrow FM-W	380	Nominal values

www.nanoworld.com

Type: Arrow[™] FMR

Force Modulation Mode - Reflex Coating

Optimized positioning through maximized tip visibility

NanoWorld Arrow[™] FM probes are designed for Force Modulation Mode imaging. The Force Constant of the FM type fills the gap between Contact and Non-Contact probes. Furthermore Non-Contact / TappingMode imaging is possible with this probe (reduced operation stability).

All probes of the Arrow[™] series are made from monolithic silicon which is highly doped to dissipate static charge. They are chemically inert and offer a high mechanical Q-factor for high sensitivity. The probes feature a rectangular cantilever with a triangular free end and a tetrahedral tip with a height of 10 - 15 µm.

Additionally this probe offers a typical tip radius of curvature of less than 10 nm.

The unique Arrow[™] shape with the tip position at the very end of the cantilever allows easy positioning of the tip on the area of interest.

The reflex coating on the detector side of the cantilever enhances its reflectivity and prevents light from interfering within the cantilever.

Technical Data	Value	Range	Side View
Thickness	3.0µm	2.5 - 3.5	
Cantilever Geometry			
	W = 35 µm	30 - 40	
	L = 240 μm	235 - 245	Front View
Force Constant	2.8 N/m	1.4 - 5.8	
Resonance Frequency	75 kHz	58 - 97	

Order Code	Quantity	Data Sheet
Arrow FMR-10	10	Nominal values
Arrow FMR-20	20	Nominal values
Arrow FMR-50	50	Nominal values
Arrow FMR-W	380	Nominal values

Reflex Coating

Reflex coating is an approximately 30 nm thick aluminium coating on the detector side of the cantilever which enhances the reflectivity of the laser beam by a factor of 2.5. Furthermore it prevents light from interfering within the cantilever. As the coating is almost stress free the bending of the cantilever due to stress is less than 2°.

www.nanoworld.com

Type: Arrow[™] EFM

Electrostatic Force Microscopy – Ptlr5 coating

Optimized positioning through maximized tip visibility

NanoWorld Arrow[™] EFM probes are designed for electrostatic force microscopy. The force constant and the special coating of the EFM type are optimised for this type of application. This type of probe yields very high force sensitivity, while simultaneously enabling tapping and lift mode operation.

All probes of the Arrow[™] series are made from monolithic silicon which is highly doped to dissipate static charge. They are chemically inert and offer a high mechanical Q-factor for high sensitivity. The probes feature a rectangular cantilever with a triangular free end and a tetrahedral tip with a height of 10 - 15 µm.

Additionally this probe offers a typical tip radius of curvature of less than 10 nm.

The unique Arrow[™] shape with the tip position at the very end of the cantilever allows easy positioning of the tip on the area of interest.

The platinum iridium5 (PtIr5) coating on both sides of the probe allows electrical contacts between tip and sample (high conductivity) while enhancing the reflectivity of the cantilever. The typical tip radius of curvature is less than 25 nm.

Technical Data	Value	Range	Side View
Thickness	3.0µm	2.5 - 3.5	
Cantilever Geometry			
	W = 35 µm	30 - 40	
	L = 240 µm	235 - 245	Front View
Force Constant	2.8 N/m	1.4 - 5.8	
Resonance Frequency	75 kHz	58 - 97	

Order Code	Quantity	Data Sheet
Arrow EFM-10	10	Nominal values
Arrow EFM-20	20	Nominal values
Arrow EFM-50	50	Nominal values
Arrow EFM-W	380	Nominal values

Ptlr5 Coating

PtIr5 coating is an approximately 23 nm thick double layer of chromium and platinum iridium5 on both sides of the cantilever. The tip side coating enhances the conductivity of the tip and allows electrical contacts. The detector side coating enhances the reflectivity of the laser beam by a factor of 2 and prevents light from interfering within the cantilever. The coating process is optimised for stress compensation and wear resistance. The bending of the cantilever due to stress is less than 2°. Wear at the tip can occur if operating in contact-, friction- or force modulation mode.

www.nanoworld.com

Type: FM

Force Modulation Mode

The NanoWorld Pointprobe® FM type is designed for Force Modulation Mode imaging. The Force Constant of the FM type fills the gap between Contact and Non-Contact probes. Furthermore Non-Contact / TappingMode imaging is possible with this probe (reduced operation stability).

All probes of the Pointprobe® series are made from monolithic silicon which is highly doped to dissipate static charge. They are chemically inert and offer a high mechanical Q-factor for high sensitivity. The tip is shaped like a polygon based pyramid with a height of 10-15 µm.

Additionally this probe offers typical tip radius of curvature of less than 8 nm.

Technical Data	Value	Range	
Thickness	3 µm	2.5 - 3.5	
Mean Width	28 µm	22.5 - 32.5	
Length	225 µm	220 - 230	
Force Constant	2.8 N/m	1.2 - 5.5	
Resonance Frequency	75 kHz	60 - 90	

Order Code	Quantity	Data Sheet
FM-10	10	yes
FM-20	20	yes
FM-50	50	no
FM-W	380	yes

www.nanoworld.com

Type: FMR

Force Modulation Mode - Reflex Coating

The NanoWorld Pointprobe® FM Probes are designed for Force Modulation Mode imaging. The Force Constant of the FM type fills the gap between Contact and Non-Contact probes. Furthermore Non-Contact / TappingMode imaging is possible with this probe (reduced operation stability).

All probes of the Pointprobe® series are made from monolithic silicon which is highly doped to dissipate static charge. They are chemically inert and offer a high mechanical Q-factor for high sensitivity. The tip is shaped like a polygon based pyramid with a height of 10-15 µm.

Additionally this probe offers typical tip radius of curvature of less than 8 nm.

The reflex coating on the detector side of the cantilever enhances its reflectivity and prevents light from interfering within the cantilever.

Technical Data	Value	Range
Thickness	3 µm	2.5 - 3.5
Mean Width	28 µm	22.5 - 32.5
Length	225 µm	220 - 230
Force Constant	2.8 N/m	1.2 - 5.5
Resonance Frequency	75 kHz	60 - 90

Order Code	Quantity	Data Sheet
FMR-10	10	yes
FMR-20	20	yes
FMR-50	50	no
FMR-W	380	yes

Reflex Coating

Reflex coating is an approximately 30 nm thick aluminium coating on the detector side of the cantilever which enhances the reflectivity of the laser beam by a factor of 2.5. Furthermore it prevents light from interfering within the cantilever. As the coating is almost stress free the bending of the cantilever due to stress is less than 2°.

www.nanoworld.com

Type: EFM

Electrostatic Force Microscopy - PtIr5 Coating

The NanoWorld Pointprobe® EFM type is designed for Electrostatic Force Microscopy. The Force Constant and the special coating of the EFM type are optimized for this type of application. This type of probe yields a very high force sensitivity, while simultaneously enabling TappingMode and Lift Mode operation.

All probes of the Pointprobe® series are made from monolithic silicon which is highly doped to dissipate static charge. They are chemically inert and offer a high mechanical Q-factor for high sensitivity. The tip is shaped like a polygon based pyramid with a height of 10-15 µm.

The platinum iridium5 (PtIr5) coating on both sides of the probe allows electrical contacts between tip and sample (high conductivity) while enhancing the reflectivity of the cantilever. The typical tip radius of curvature is less than 25 nm.

Technical Data	Value	Range
Thickness	3 µm	2.5 - 3.5
Mean Width	28 µm	22.5 - 32.5
Length	225 µm	220 - 230
Force Constant	2.8 N/m	1.2 - 5.5
Resonance Frequency	75 kHz	60 - 90

Order Code	Quantity	Data Sheet
EFM-10	10	yes
EFM-20	20	yes
EFM-50	50	no
EFM-W	380	yes

Ptlr5 Coating

PtIr5 coating is an approximately 23 nm thick double layer of chromium and platinum iridium5 on both sides of the cantilever. The tip side coating enhances the conductivity of the tip and allows electrical contacts. The detector side coating enhances the reflectivity of the laser beam by a factor of 2 and prevents light from interfering within the cantilever. The coating process is optimized for stress compensation and wear resistance. The bending of the cantilever due to stress is less than 2°. Wear at the tip can occur if operating in Contact Mode, Friction Mode or Force Modulation Mode.

www.nanoworld.com

Type: MFMR

Magnetic Force Microscopy - Reflex Coating

The NanoWorld Pointprobe® MFM type is designed for Magnetic Force Microscopy. The Force Constant and the special hard Magnetic tip side coating of the MFM type are optimized for this type of application. This type of probe yields very high force sensitivity, while simultaneously enabling TappingMode and Lift Mode operation.

All probes of the Pointprobe® series are made from monolithic silicon which is highly doped to dissipate static charge. They are chemically inert and offer a high mechanical Q-factor for high sensitivity. The tip is shaped like a polygon based pyramid with a height of 10-15 µm.

Additionally this probe offers unique features:

- typical tip radius of curvature < 50 nm
- high magnetic contrast and lateral resolution < 100 nm
- electrically conductive coating

Soft magnetic samples may be influenced by the tip magnetization!

The reflex coating on the detector side of the cantilever enhances its reflectivity and prevents light from interfering within the cantilever.

Technical Data	Value	Range
Thickness	3 µm	2.5 - 3.5
Mean Width	28 µm	22.5 - 32.5
Length	225 µm	220 - 230
Force Constant	2.8 N/m	1.2 - 5.5
Resonance Frequency	75 kHz	60 - 90

Hard Magnetic Coating

Hard Magnetic coating is cobalt alloy coating on the tip side of the cantilever leading to a permanent magnetization of the tip with the direction usually along the tip axis. We recommend to magnetize the tip by means of a strong magnet (e.g. a NdFeB magnet, a few millimeters in size). As the coating is almost stress free the bending of the cantilever due to stress is less than 2°.

Reflex Coating

Reflex coating is an approximately 30 nm thick aluminum coating on the detector side of the cantilever which enhances the reflectivity of the laser beam by a factor of 2.5. Furthermore it prevents light from interfering within the cantilever. As the coating is almost stress-free the bending of the cantilever due to stress is less than 2°.

Pointprobe® is a registered trademark of NanoWorld AG Gel-Pak® is a registered trademark of Vichem Corporation All data are subject to change without notice.

www.nanoworld.com

Type: S-MFMR

Soft Magnetic Coating - Magnetic Force Microscopy - Reflex Coating

NanoWorld Pointprobe® S-MFMR AFM probes are designed for the measurement of magnetic domains in soft magnetic samples. Due to the low coercivity of the soft magnetic tip coating the magnetisation of the tip will easily get reoriented by hard magnetic samples.

All probes of the Pointprobe® series are made from monolithic silicon which is highly doped to dissipate static charge. The tip is shaped like a polygon based pyramid with a height of 10-15 µm.

Additionally this sensor offers unique features:

- soft magnetic coating on the tip side (coercivity of app. 0.75 Oe, remanence magnetization of app. 225 emu/cm³)
- effective magnetic moment 0.75x of standard probes
- tip radius of curvature of the coated tip < 30 nm
- magnetic resolution better than 35 nm

The reflex coating on the detector side of the cantilever enhances its reflectivity and prevents light from interfering within the cantilever.

Technical Data	Value	Range
Thickness	3 µm	2.5 - 3.5
Mean Width	28 µm	22.5 - 32.5
Length	225 µm	220 - 230
Force Constant	2.8 N/m	1.2 - 5.5
Resonance Frequency	75 kHz	60 - 90

Order Code	Quantity	Data Sheet
S-MFMR-10	10	yes
S-MFMR-20	20	yes
S-MFMR-50	50	no

Soft Magnetic Coating

The S-MFMR is coated with a soft magnetic thin film. This soft magnetic coating on the tip has a coercivity of app. 0.75 Oe and a remanence magnetization of app. 225 emu/cm³ (these values were determined on a flat surface). For enhanced signal strength the magnetization of the tip by means of a strong permanent magnet prior to the measurement is recommended.

Reflex Coating

Reflex coating is an approximately 30 nm thick aluminium coating on the detector side of the cantilever which enhances the reflectivity of the laser beam by a factor of 2.5. Furthermore it prevents light from interfering within the cantilever. As the coating is almost stress free the bending of the cantilever due to stress is less than 2°.

www.nanoworld.com

Type: DT-FMR

Diamond Coated Tip - Force Modulation Mode - Reflex Coating

The NanoWorld Diamond Coated FM Probes are designed for Force Modulation Mode imaging. The Force Constant of the FM type fills the gap between Contact and Non-Contact probes. Furthermore Non-Contact / TappingMode imaging is possible with this probe (reduced operation stability).

The Diamond Coated type is based on the Pointprobe® series. All probes of the Pointprobe® series are made from monolithic silicon which is highly doped to dissipate static charge. They are chemically inert and offer a high mechanical Q-factor for high sensitivity. The tip is shaped like a polygon based pyramid with a height of 10-15 µm.

For applications that require hard contact between tip and sample this probe offers a real diamond tip side coating. This coating features extremely high wear resistance due to the unsurpassed hardness of diamond. The typical macroscopic tip radius of curvature is in the range between 100 and 200 nm. Nanoroughnesses in the 10 nm regime

improve the resolution on flat surfaces.

The reflex coating on the detector side of the cantilever enhances its reflectivity and prevents light from interfering within the cantilever.

Technical Data	Value	Range	
Thickness	3 µm	2.5 - 3.5	
Mean Width	28 µm	22.5 - 32.5	
Length	225 µm	220 - 230	
Force Constant	2.8 N/m	1.2 - 5.5	
Resonance Frequency	75 kHz	60 - 90	

Order Code	Quantity	Data Sheet
DT-FMR-10	10	yes
DT-FMR-20	20	yes
DT-FMR-50	50	no
DT-FMR-W	380	yes

Fig.: Raman spectrum of the diamond coating

Diamond Coating

Diamond coating is an approximately 100 nm thick coating of polycrystalline diamond on the tip side of the cantilever leading to an unsurpassed hardness of the tip. The figure shows the Raman spectrum of the coating verifying true diamond.

Reflex Coating

Reflex coating is an approximately 30 nm thick aluminum coating on the detector side of the cantilever which enhances the reflectivity of the laser beam by a factor of 2.5. Furthermore it prevents light from interfering within the cantilever. As the coating is almost stress free the bending of the cantilever due to stress is less than 2°.

www.nanoworld.com

Type: CDT- FMR

Conductive Diamond Coated Tip - Force Modulation Mode – Reflex Coating

The NanoWorld Conductive Diamond Coated FM type is designed for Force Modulation Mode imaging. The Force Constant of the FM type fills the gap between Contact and Non-Contact probes. Furthermore Non-Contact / TappingMode imaging is possible with this probe (reduced operation stability).

The Conductive Diamond Coated type is based on the Pointprobe® series. All probes of the Pointprobe® series are made from monolithic silicon which is highly doped to dissipate static charge. They are chemically inert and offer a high mechanical Q-factor for high sensitivity. The tip is shaped like a polygon based pyramid with a height of 10-15 μ m.

For applications that require hard contact between tip and sample this probe offers a real diamond tip side coating. This coating features extremely high wear resistance due to the unsurpassed hardness of diamond. The typical macroscopic tip radius of curvature is in the range between 100 and 200 nm. Nanoroughnesses in the 10 nm regime improve the resolution on flat surfaces.

The CDT features a conductive diamond coating. Some typical applications for this tip are Scanning Spreading Resistance Microscopy (SSRM), Tunneling AFM (Conducting AFM) and Scanning Capacitance Microscopy (SCM).

The reflex coating on the detector side of the cantilever enhances its reflectivity and prevents light from interfering within the cantilever.

Technical Data	Value	Range	A
Thickness	3 µm	2.5 - 3.5	
Mean Width	28 µm	22.5 - 32.5	
Length	225 µm	220 - 230	
Force Constant	2.8 N/m	1.2 - 5.5	A Contraction
Resonance Frequency	75 kHz	60 - 90	
			- ANA ANA
Order Code	Quantity	Data Sheet	· · · · · · · · · · · · · · · · · · ·
CDT-FMR-10	10	yes	
CDT-FMR-20	20	yes	1000-
CDT-FMR-50	50	no	
CDT-FMR-W	380	yes	800-
			···

Fig.: Raman spectrum of the diamond coating

Conductive Diamond Coating

Diamond coating is an approximately 100 nm thick coating of polycrystalline diamond on the tip side of the cantilever leading to an unsurpassed hardness of the tip. The figure shows the Raman spectrum of the coating verifying true diamond. The coating is highly doped with boron. This leads to a macroscopic resistivity of 0.003 – 0.005 Ohm*cm.

Reflex Coating

Reflex coating is an approximately 30 nm thick aluminum coating on the detector side of the cantilever which enhances the reflectivity of the laser beam by a factor of 2.5. Furthermore it prevents light from interfering within the cantilever. As the coating is almost stress free the bending of the cantilever due to stress is less than 2°.

NANO WORLD

www.nanoworld.com

Type: PNP-DB

Pyrex-Nitride Probe – Diving Board Cantilevers Contact Mode

Leading edge in sharpness and durability

NanoWorld Pyrex-Nitride probes are designed for biological imaging in contact or dynamic mode.

The Pyrex-Nitride probes have silicon nitride cantilevers with very low force constants and integrated oxide sharpened, pyramidal tips with a height of 3.5 µm. The tip is located 4 µm behind the free end of the cantilever. This probe series features a support chip that is made of Pyrex. Two chip versions are available: The DB series with rectangular / diving board cantilevers and the TR series having triangular cantilevers. Both sides of the chip have identical cantilevers. All cantilevers are stress compensated and have a 65 nm chromium / gold backside coating for high laser reflectivity.

All chips are pre-separated prior to shipment and come in Gel-Pak containers.

The typical tip radius of curvature of is below 10 nm. The cantilever bending is below 2°.

Pyrex-Nitride[™] oxide sharpened,pyramidal tip

DB Series			
Cantilever#	1	2	
Shape	Diving Board		
Overall Thickness	600 nm	600 nm	
Length	100 µm	200 µm	
Width (single beam)	40 µm	40 µm	
Force Constant	0.48 N/m	0.06 N/m	
Resonance Frequency	67 kHz	17 kHz	

Please note: The above given mechanical properties are typical values.

Order Code	Quantity	Data Sheet
PNP-DB-20	20	Nominal values
PNP-DB-50	50	Nominal values

Type: PNP-TR

Pyrex-Nitride Probe – TRiangular Cantilevers

Leading edge in sharpness and durability

NanoWorld Pyrex-Nitride probes are designed for various imaging applications in contact or dynamic mode.

The Pyrex-Nitride probes have silicon nitride cantilevers with very low force constants and integrated oxide sharpened, pyramidal tips with a height of $3.5 \,\mu$ m. The tip is located 4 μ m behind the free end of the cantilever. The probe series features a support chip that is made of Pyrex. The TR series features two different triangular cantilevers. Both sides of the chip have identical cantilevers. All cantilevers are stress compensated and have a 65 nm chromium / gold backside coating for high laser reflectivity.

All chips are pre-separated prior to shipment and come in Gel-Pak containers.

The typical tip radius of curvature is below 10 nm. The cantilever bending is below 2°.

Fig. 1: Pyrex-Nitride oxide sharpened, pyramidal tip

Fig. 2: Pyrex-Nitride Probe - Diving Board Cantilevers

T	R Series		
Cantilever#	1	2	
Shape	Trian	gular	
Overall Thickness	600 nm	600 nm	
Length	100 µm	200 µm	
Width (single beam)	2 x 13.5 µm	2 x 28 µm	
Force Constant	0.32 N/m	0.08 N/m	
Resonance Frequency	67 kHz	17 kHz	

Please note: The above given mechanical properties are typical values.

Order Code	Quantity	Data Sheet
PNP-TR-20	20	Nominal values
PNP-TR-50	50	Nominal values

www.nanoworld.com

Type: Arrow[™] CONT

Contact Mode

Optimized positioning through maximized tip visibility

NanoWorld Arrow[™] CONT probes are designed for Contact Mode imaging. Furthermore this type can be used for Force Distance Spectroscopy Mode or Pulsed Force Mode (PFM). The CONT type is optimized for high sensitivity due to a low Force Constant.

All probes of the Arrow[™] series are made from monolithic silicon which is highly doped to dissipate static charge. They are chemically inert and offer a high mechanical Q-factor for high sensitivity. The probes feature a rectangular cantilever with a triangular free end and a tetrahedral tip with a height of 10 - 15 µm.

Additionally this probe offers a typical tip radius of curvature of less than 10 nm.

The unique Arrow[™] shape with the tip position at the very end of the cantilever allows easy positioning of the tip on the area of interest.

Order Code	Quantity	Data Sheet
Arrow CONT-10	10	Nominal values
Arrow CONT-20	20	Nominal values
Arrow CONT-50	50	Nominal values
Arrow CONT-W	380	Nominal values

www.nanoworld.com

Type: Arrow[™] CONTR

Contact Mode - Reflex Coating

Optimized positioning through maximized tip visibility

NanoWorld Arrow[™] CONT probes are designed for Contact Mode imaging. Furthermore this type can be used for Force Distance Spectroscopy Mode or Pulsed Force Mode (PFM). The CONT type is optimized for high sensitivity due to a low Force Constant.

All probes of the Arrow[™] series are made from monolithic silicon which is highly doped to dissipate static charge. They are chemically inert and offer a high mechanical Q-factor for high sensitivity. The probes feature a rectangular cantilever with a triangular free end and a tetrahedral tip with a height of 10 - 15 µm.

Additionally this probe offers a typical tip radius of curvature of less than 10 nm.

The unique Arrow[™] shape with the tip position at the very end of the cantilever allows easy positioning of the tip on the area of interest.

The reflex coating on the detector side of the cantilever enhances its reflectivity and prevents light from interfering within the cantilever.

Technical Data	Value	Range	Side View
Thickness	2.0µm	1.5 - 2.5	
Cantilever Geometry	W = 45 μm L = 450 μm	40 - 50 445 - 455	Front View
Force Constant	0.2 N/m	0.06 - 0.38	
Resonance Frequency	14 kHz	10 - 19	Contraction of the local division of the loc
			10- 10- 10- 10- 10- 10- 10- 10- 10- 10-

Order Code	Quantity	Data Sheet
Arrow CONTR-10	10	Nominal values
Arrow CONTR-20	20	Nominal values
Arrow CONTR-50	50	Nominal values
Arrow CONTR-W	380	Nominal values

Reflex Coating

Reflex coating is an approximately 30 nm thick aluminum coating on the detector side of the cantilever which enhances the reflectivity of the laser beam by a factor of 2.5. Furthermore it prevents light from interfering within the cantilever. As the coating is almost stress free the bending of the cantilever due to stress is less than 2°.

www.nanoworld.com

Type: Arrow[™] CONTPt

Contact Mode – PtIr5 Coating

Optimized positioning through maximized tip visibility

NanoWorld Arrow[™] CONTPt AFM probes are designed for Contact Mode imaging. Furthermore this type can be used for Force Distance Spectroscopy Mode or Pulsed Force Mode (PFM). The CONT type is optimized for high sensitivity due to a low Force Constant.

All AFM probes of the Arrow[™] series are made from monolithic silicon which is highly doped to dissipate static charge. They are chemically inert and offer a high mechanical Q-factor for high sensitivity. The SPM probes feature a rectangular cantilever with a triangular free end and a tetrahedral tip with a height of 10 - 15 µm.

Additionally this probe offers a typical tip radius of curvature of less than 10 nm.

The unique Arrow[™] shape with the tip position at the very end of the cantilever allows easy positioning of the tip on the area of interest.

The platinum iridium5 (PtIr5) coating on both sides of the probe allows electrical contacts between tip and sample (high conductivity) while enhancing the reflectivity of the cantilever. The typical tip radius of curvature is less than 25 nm.

Technical Data	Value	Range	Side View
Thickness	2.0µm	1.5 - 2.5	
Cantilever Geometry			
	W = 45 µm	40 - 50	
	L = 450 μm	445 - 455	Front View
Force Constant	0.2 N/m	0.06 - 0.38	
Resonance Frequency	14 kHz	10 - 19	and the second se

Order Code	Quantity	Data Sheet
Arrow CONTPt-10	10	Nominal values
Arrow CONTPt-20	20	Nominal values
Arrow CONTPt-50	50	Nominal values
Arrow CONTPt-W	380	Nominal values

PtIr5 Coating

PtIr5 Coating PtIr5 coating is an approximately 23 nm thick double layer of chromium and platinum iridium5 on both sides of the cantilever. The tip side coating enhances the conductivity of the tip and allows electrical contacts. The detector side coating enhances the reflectivity of the laser beam by a factor of 2 and prevents light from interfering within the cantilever. The coating process is optimised for stress compensation and wear resistance. The bending of the cantilever due to stress is less than 2°. Wear at the tip can occur if operating in contact-, friction- or force modulation mode.

www.nanoworld.com

Type: CONT

Contact Mode

The NanoWorld Pointprobe® CONT type is designed for Contact Mode imaging. Furthermore this type can be used for Force Distance Spectroscopy Mode or Pulsed Force Mode (PFM). The CONT type is optimized for high sensitivity due to a low Force Constant.

All probes of the Pointprobe® series are made from monolithic silicon which is highly doped to dissipate static charge. They are chemically inert and offer a high mechanical Q-factor for high sensitivity. The tip is shaped like a polygon based pyramid with a height of 10-15 µm.

Additionally this probe offers typical tip radius of curvature of less than 8 nm.

Cantilever Data	Value	Range	
Thickness	2 µm	1.5 - 2.5	
Mean Width	50 µm	45 - 55	
Length	450 µm	445 - 455	
Force Constant	0.2 N/m	0.07 - 0.4	
Resonance Frequency	13 kHz	9 - 17	

Order Code	Quantity	Data Sheet
CONT-10	10	yes
CONT-20	20	yes
CONT-50	50	no
CONT-W	385	yes

For Lateral Force Microscopy (LFM) we recommend our specially tailored LFM type.

www.nanoworld.com

Type: CONTR

Contact Mode - Reflex Coating

The NanoWorld Pointprobe® CONT type is designed for Contact Mode imaging. Furthermore this probe can be used for Force Distance Spectroscopy Mode or Pulsed Force Mode (PFM). The CONT type is optimized for high sensitivity due to a low Force Constant.

All probes of the Pointprobe® series are made from monolithic silicon which is highly doped to dissipate static charge. They are chemically inert and offer a high mechanical Q-factor for high sensitivity. The tip is shaped like a polygon based pyramid with a height of 10-15 µm.

Additionally this probe offers typical tip radius of curvature of less than 8 nm.

The reflex coating on the detector side of the cantilever enhances its reflectivity and prevents light from interfering within the cantilever.

Technical Data	Value	Range
Thickness	2 µm	1.5 - 2.5
Mean Width	50 µm	45 - 55
Length	450 µm	445 - 455
Force Constant	0.2 N/m	0.07 - 0.4
Resonance Frequency	13 kHz	9 - 17

Order Code	Quantity	Data Sheet
CONTR-10	10	yes
CONTR-20	20	yes
CONTR-50	50	no
CONTR-W	380	yes

Reflex Coating

Reflex coating is an approximately 30 nm thick aluminium coating on the detector side of the cantilever which enhances the reflectivity of the laser beam by a factor of 2.5. Furthermore it prevents light from interfering within the cantilever. As the coating is almost stress free the bending of the cantilever due to stress is less than 2°.

For Lateral Force Microscopy (LFM) we recommend our specially tailored LFMR type with reflex coating.

www.nanoworld.com

Type: CONTPt

Contact Mode - Ptlr5 Coating

The NanoWorld Pointprobe® CONT type is designed for Contact Mode imaging. Furthermore this type can be used for Force Distance Spectroscopy Mode or Pulsed Force Mode (PFM). The CONT type is optimized for high sensitivity due to a low Force Constant.

All probes of the Pointprobe® series are made from monolithic silicon which is highly doped to dissipate static charge. They are chemically inert and offer a high mechanical Q-factor for high sensitivity. The tip is shaped like a polygon based pyramid with a height of 10 -15 µm.

The platinum iridium5 (PtIr5) coating on both sides of the probe allows electrical contacts between tip and sample (high conductivity) while enhancing the reflectivity of the cantilever. The typical tip radius of curvature is less than 25 nm.

Thickness 2 μm 1.5 - 2.5 Mean Width 50 μm 45 - 55 Length 450 μm 445 - 455 Force Constant 0.2 N/m 0.07 - 0.4	Technical Data	Value	Range
Mean Width 50 μm 45 - 55 Length 450 μm 445 - 455 Force Constant 0.2 N/m 0.07 - 0.4	Thickness	2 µm	1.5 - 2.5
Length 450 μm 445 - 455 Force Constant 0.2 N/m 0.07 - 0.4	Mean Width	50 µm	45 - 55
Force Constant 0.2 N/m 0.07 - 0.4	Length	450 µm	445 - 455
	Force Constant	0.2 N/m	0.07 - 0.4
Resonance Frequency 13 kHz 9 - 1/	Resonance Frequency	13 kHz	9 - 17

Order Code	Quantity	Data Sheet
CONTPt-10	10	yes
CONTPt-20	20	yes
CONTPt-50	50	no
CONTPt-W	380	yes

Ptlr5 Coating

PtIr5 coating is an approximately 23 nm thick double layer of chromium and platinum iridium5 on both sides of the cantilever. The tip side coating enhances the conductivity of the tip and allows electrical contacts. The detector side coating enhances the reflectivity of the laser beam by a factor of 2 and prevents light from interfering within the cantilever. The coating process is optimized for stress compensation and wear resistance. The bending of the cantilever due to stress is less than 2°. Wear at the tip can occur if operating in Contact Mode, Friction Mode or Force Modulation Mode.

www.nanoworld.com

Type: CONTSC

Contact Mode – Short Cantilever

NanoWorld Pointprobe® CONTSC AFM probe is an alternative cantilever type for contact mode applications. The length of cantilever is reduced with respect to the preferred contact mode type enabling easier exchange with non-contact mode probes for some AFM instruments. Additionally, this probe type allows the application for lateral or friction force mode.

All probes of the Pointprobe® series are made from monolithic silicon which is highly doped to dissipate static charge. They are chemically inert and offer a high mechanical Q-factor for high sensitivity. The tip is shaped like a polygon based pyramid with a height of 10 -15 µm.

Additionally this probes offers typical tip radius of curvature of less than 8 nm.

Technical Data	Value	Range
Thickness	1 µm	0.5 - 1.5
Mean Width	48 µm	42.5 - 52.5
Length	225 µm	220 - 230
Force Constant	0.2 N/m	0.02 - 0.7
Resonance Frequency	23 kHz	10 - 39

Order Code	Quantity	Data Sheet
CONTSC-10	10	yes
CONTSC-20	20	yes
CONTSC-50	50	no
CONTSC-W	380	yes

www.nanoworld.com

Type: CONTSCR

Contact Mode – Short Cantilever – Reflex Coating

NanoWorld Pointprobe® CONTSCR AFM probe is an alternative cantilever type for contact mode applications. The length of cantilever is reduced with respect to the preferred contact mode type enabling easier exchange with non-contact mode probes for some AFM instruments. Additionally, this probe type allows the application for lateral or friction force mode.

All SPM probes of the Pointprobe® series are made from monolithic silicon which is highly doped to dissipate static charge. They are chemically inert and offer a high mechanical Q-factor for high sensitivity. The tip is shaped like a polygon based pyramid with a height of 10 -15 µm.

Additionally this probe offers typical tip radius of curvature of less than 8 nm.

The reflex coating on the detector side of the cantilever enhances its reflectivity and prevents light from interfering within the cantilever.

Technical Data	Value	Range
Thickness	1 µm	0.5 - 1.5
Mean Width	48 µm	42.5 – 52.5
Length	225 µm	220 - 230
Force Constant	0.2 N/m	0.02 - 0.7
Resonance Frequency	23 kHz	10 - 39

Order Code	Quantity	Data Sheet
CONTSCR-10	10	yes
CONTSCR-20	20	yes
CONTSCR-50	50	no
CONTSCR-W	380	yes

Reflex Coating

Reflex coating is an approximately 30 nm thick aluminium coating on the detector side of the cantilever which enhances the reflectivity of the laser beam by a factor of 2.5. Furthermore it prevents light from interfering within the cantilever. As the coating is almost stress free the bending of the cantilever due to stress is less than 2°.

www.nanoworld.com

Type: ZEILR

ZEISS Veritekt microscopes - Contact Mode Low Force Constant - Reflex Coating

The NanoWorld Pointprobe® ZEILR type is designed for owners of the Zeiss Veritekt or a Seiko Instruments microscope using the Contact Mode. Compared to the Pointprobe® Contact Mode type the Force Constant is slightly increased.

All probes of the Pointprobe® series are made from monolithic silicon which is highly doped to dissipate static charge. They are chemically inert and offer a high mechanical Q-factor for high sensitivity. The tip is shaped like a polygon based pyramid with a height of 10-15 µm.

Additionally this probe offers typical tip radius of curvature of less than 8 nm.

Technical Data	Value	Range
Thickness	4 µm	3.5 - 4.5
Mean Width	55 µm	50 - 60
Length	450 µm	445 - 455
Force Constant	1.6 N/m	1.0 - 2.6
Resonance Frequency	27 kHz	23 - 31

Order Code	Quantity	Data Sheet
ZEILR-10	10	yes
ZEILR-20	20	yes
ZEILR-50	50	no
ZEILR-W	380	yes

Reflex Coating

Reflex coating is an approximately 30 nm thick aluminium coating on the detector side of the cantilever which enhances the reflectivity of the laser beam by a factor of 2.5. Furthermore it prevents light from interfering within the cantilever. As the coating is almost stress free the bending of the cantilever due to stress is less than 2°.

www.nanoworld.com

Type: Arrow[™] TL1

Tipless Cantilevers

NanoWorld Arrow[™] TL1 probes are tipless cantilevers for special applications. They can for example be used for attaching spheres and other objects to the free end of the cantilever, or for functionalizing and sensing applications.

All probes of the Arrow[™] series are made from monolithic silicon which is highly doped to dissipate static charge and are chemically inert. The TL1 probes feature one rectangular cantilever with a triangular free end.

The Arrow[™] TL1 probes are optionally available with a top side coating of 5 nm titanium / 30 nm gold.

Thickness Width (rectangular part)	1.0 µm	0.5 - 2.5	and the second second	
Width (rectangular part)	100	05 405		
	του μπ	95 - 105	A COLORED	
Length	500 µm	495 - 505		
Force Constant 0	.03 N/m	0.004 - 0.54		
Resonance Frequency	6 kHz	3 - 14		

Order Code without coating	Quantity	Data Sheet
Arrow TL1-50	50	Nominal values
Order Code with Ti/Au coating	Quantity	Data Sheet
Arrow TL1Au-50	50	Nominal values

www.nanoworld.com

Type: Arrow[™] TL2

Tipless Cantilevers

NanoWorld Arrow[™] TL2 probes are tipless cantilevers for special applications. They can for example be used for attaching spheres and other objects to the free end of the cantilever, or for functionalizing and sensing applications.

All probes of the Arrow[™] series are made from monolithic silicon which is highly doped to dissipate static charge and are chemically inert. The TL2 probes feature two rectangular cantilevers having a triangular free end. The cantilevers have a pitch of 250 µm.

The Arrow[™] TL2 probes are optionally available with a top side coating of 5 nm titanium / 30 nm gold.

Cantilever Data	Value	Range
Thickness	1.0 µm	0.5 - 2.5
Width (rectangular part)	100 µm	95 - 105
Length	500 µm	495 - 505
Force Constant	0.03 N/m	0.004 - 0.54
Pitch	250 µm	n.a.
Resonance Frequency	6 kHz	3 - 14

Order Code without coating	Quantity	Data Sheet
Arrow TL2-50	50	Nominal values
Order Code with Ti/Au coating	Quantity	Data Sheet
Arrow TL2Au-50	50	Nominal values

www.nanoworld.com

Type: Arrow[™] TL8

Tipless Cantilevers

NanoWorld Arrow[™] TL8 probes are tipless cantilevers for special applications. They can for example be used for attaching spheres and other objects to the free end of the cantilever, or for functionalizing and sensing applications.

All probes of the Arrow[™] series are made from monolithic silicon which is highly doped to dissipate static charge and are chemically inert. The TL8 probes feature eight rectangular cantilevers having a triangular free end. The cantilevers have a pitch of 250 µm.

The Arrow[™] TL8 probes are optionally available with a top side coating of 5nm titanium / 30nm gold.

Cantilever Data	Value	Range	10000	П	П	П		
Thickness	1.0 µm	0.5 - 2.5	1999		Ш	Ш		
Width (rectangular part)	100 µm	95 - 105			Ш	Ш		
Length	500 μm	495 - 505			Ш			
Force Constant	0.03 N/m	0.004 - 0.54		u	u	u	 	
Pitch	250 µm	n.a.						
Resonance Frequency	6 kHz	3 - 14						

Order Code without coating	Quantity	Data Sheet
Arrow TL8-50	50	Nominal values
Order Code with Ti/Au coating	Quantity	Data Sheet
Arrow TL8Au-50	50	Nominal values

NanoWorld AG Rue Jaquet-Droz 1, C.P. 216 2002 Neuchâtel Switzerland www.nanoworld.com NANO WORLD

Type: PNP-TR-TL

Pyrex-Nitride Probe – TRiangular Cantilevers - TipLess

Leading edge in sharpness and durability

NanoWorld Pyrex-Nitride[™] probes are designed for various imaging applications in contact or dynamic mode. Tipless cantilevers are often used for applications that require functionalization of the cantilever surface or attaching objects (like spheres or particles) to the end of the cantilever. These and various other applications are especially interesting for the fields of life science and biology.

The Pyrex-Nitride[™] probes have silicon nitride cantilevers with very low force constants. The probe series features a support chip that is made of Pyrex. The TR series features two different triangular cantilevers. Both sides of the chip have identical cantilevers. All cantilevers are stress compensated and have a 65 nm chromium / gold backside coating for high laser reflectivity.

All chips are pre-separated prior to shipment and come in Gel-Pak containers.

The cantilever bending is below 2°.

Fig. 1: Pyrex-Nitride oxide sharpened, pyramidal tip

Fig. 2: Pyrex-Nitride Probe - Diving Board Cantilevers

TR Series			
Cantilever#	1	2	
Shape	Triangular		
Overall Thickness	600 nm	600 nm	
Length	100 µm	200 µm	
Width (single beam)	2 x 13.5 µm	2 x 28 µm	
Force Constant	0.32 N/m	0.08 N/m	
Resonance Frequency	67 kHz	17 kHz	

Please note: The above given mechanical properties are typical values.

Order Code	Quantity	Data Sheet
PNP-TR-TL-20	20	Nominal values
PNP-TR-TL-50	50	Nominal values

NanoWorld AG Rue Jaquet-Droz 1, C.P. 216 2002 Neuchâtel Switzerland www.nanoworld.com NANO WORLD

Type: PNP-TR-TL-Au

Pyrex-Nitride Probe – TRiangular Cantilevers – TipLess – Coating (Au)

Leading edge in sharpness and durability

NanoWorld Pyrex-Nitride[™] probes are designed for various imaging applications in contact or dynamic mode. Tipless cantilevers are often used for applications that require functionalization of the cantilever surface or attaching objects (like spheres or particles) to the end of the cantilever. These and various other applications are especially interesting for the fields of life science and biology.

The Pyrex-Nitride[™] probes have silicon nitride cantilevers with very low force constants. The probe series features a support chip that is made of Pyrex. The TR series features two different triangular cantilevers. Both sides of the chip have identical cantilevers. All cantilevers are stress compensated and have a 35 nm chromium / gold coating on both sides.

All chips are pre-separated prior to shipment and come in Gel-Pak containers.

The cantilever bending is below 2°.

Pyrex-Nitride[™] Triangular Tipless Cantilever

Pyrex-Nitride™ Probe – Triangular Tipless Cantilevers

TR Series			
Cantilever#	1	2	
Shape	Trian	gular	
Overall Thickness	600 nm	600 nm	
Length	100 µm	200 µm	
Width (single beam)	2 x 13.5 µm	2 x 28 µm	
Force Constant	0.32 N/m	0.08 N/m	
Resonance Frequency	67 kHz	17 kHz	

Please note: The above given mechanical properties are typical values.

Order Code	Quantity	Data Sheet
PNP-TR-TL-Au-20	20	Nominal values
PNP-TR-TL-Au-50	50	Nominal values

www.nanoworld.com

Special Developments

Sphere Tips

Spherical Tip with silicon oxide coating and a tip radius in the range of 2 μm

For further information please contact developers@nanoworld.com

Plateau Tip

We are also offering tips with a defined plateau between 1 μm and 8 $\mu m.$ The picture shows a plateau with a side length of about 1 $\mu m.$

For further information please contact developers@nanoworld.com

Rounded Tip

The rounding is possible with all types of our Pointprobe® products. The tip radius of curvature can be chosen between 50 nm and 500 nm. The picture shows a tip with a radius of 200 nm.

For further information please contact developers@nanoworld.com

www.nanoworld.com

Type: ALIGN

Alignment Chip

The alignment chip (ALIGN) is used for a reproducible alignment of the Pointprobe® probes to the detection system. The chip has three ridges that fit exactly into corresponding grooves at the backside of every Pointprobe®, SuperSharpSilicon™ (SSS) and High Aspect Ratio Probe. Due to this alignment mechanism the SPM-Probe can be changed with precise repositioning of the tip within ±2 µm.

Technical Data Width Length Thickness	Value 2900 μm 3400 μm 525 μm	Range ±50 μm ±50 μm ±25 μm	
Order Code	Quantity	Coating	Fig.: Picture of alignment chip and backside of
ALIGN – 10	10	Chromium	

Technical features

- reproducible positioning
- fits on all Pointprobe®, SuperSharpSilicon™ (SSS) and High Aspect Ratio Probes
- chromium coating

www.nanoworld.com

Type: TS-KIT

Tip storage Kit

The Tip Storage Kit (TS-KIT) consists of 10 NanoWorld antistatic standard GelPak® boxes with picking tweezers.

Type: ESD-KIT

ESD Safe Handling Kit

Dissipative anti-static rubber mat, grounding wire 3 m in length and wristband to ensure ESD-safe handling of our AFM probes.

www.nanoworld.com

Terms and conditions

Selection

Subject to availability sets of 10 probes or sets of 20 probes can be selected according to customer requirements (e.g. with narrow tolerances). The additional selection fee is 66.00 US\$ per set.

Guarantees

YIELD: We guarantee more than 90% good probes (exception: For SuperSharpSilicon[™] cantilever tips, Diamond Coated tips and Conductive Diamond Coated tips we guarantee more than 80% good probes). Every good probe meets the respective specifications.

TIP RADIUS: For good probes we guarantee a tip radius of smaller than 12 nm (uncoated probes only). The typical tip radius is better than 8 nm. For SuperSharpSilicon[™] cantilever probes we guarantee a tip radius of smaller than 5 nm, the typical tip radius is in the order of 2 nm. Coated tips have a typical radius in the order of the layer thickness.

ASPECT RATIO: For the High Aspect Ratio tips AR5 and the Tilt Compensated High Aspect Ratio tips AR5T we guarantee an aspect ratio of **5:1** for the last 2 μ m of the tip. The typical aspect ratio is in the order of **7:1**.

For the High Aspect Ratio tips AR10 we guarantee an aspect ratio of **10:1** for the last 1.5 μ m of the tip. The typical aspect ratio is in the order of **12:1**.

COATINGS: Although the coatings are almost free of stress it cannot be avoided completely. The bending of the cantilever due to stress is less than 2°.

Terms

TERMS: Prices are FCA Neuchâtel including packing & insurance, but exclusive of any tax and custom duties. For international transports a flat rate of 80.00 US\$ is added to the invoice. Shipment is via Federal Express. Other carriers are subject to an additional handling charge (minimum 100.00 US\$ for international shipments).

DELIVERY: Delivery period is 1 week if in stock, otherwise up to 4 months depending on status of processing.

Contact

NanoWorld AG Rue Jaquet-Droz 1, C.P. 216 2002 Neuchâtel Switzerland

Tel.: +41 (0) 32 720 5325 Fax.: +41 (0) 32 720 5775

E-Mail: info@nanoworld.com www.nanoworld.com